- #1
MathematicalPhysicist
Gold Member
- 4,699
- 373
On page 344 of "A First Course in GR" he writes the following:
Thanks!
When I do the integration I get the following: ##\int_0^{\chi^2}d\chi^2= \int_0^{r^2}\frac{dr^2}{1-r^2}= \chi^2 = -\ln (1-r^2)##, after I invert the last relation I get: ##r=\sqrt{1-\exp(-\chi^2)}##, where did I go wrong in my calculation?Consider, next, ##k=1##. Let us define a new coordinate ##\chi(r)## such that:
$$(12.16)\ \ \ d\chi^2 = \frac{dr^2}{1-r^2}$$
and ##\chi =0 ## where ##r=0##. This integrates to
$$(12.17) \ \ \ r=\sin \chi,$$
Thanks!