- #1
chisigma
Gold Member
MHB
- 1,628
- 0
Recently some interesting material about the Riemann Zeta Function appeared on MHB and I also contributed in the post... http://mathhelpboards.com/challenge-questions-puzzles-28/simplifying-quotient-7235.html#post33008
... where has been obtained the expression...
$\displaystyle \zeta (s) = \frac{1}{1-2^{1 - s}}\ \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}}\ (1)$
... that allows the effective computation of $\zeta(*)$ in the half plane where $\text{Re} (s) > 0$. It is well known that $\zeta (0) = - \frac{1}{2}$ so that is...
$\displaystyle \lim_{s \rightarrow 0 +} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}} = \frac{1}{2}\ (2)$
What I'm interested about is how to demonstrate (2) independently from (1), i.e. whitout the preliminary knowledge that $\zeta (0) = - \frac{1}{2}$. I spent many hours in attempts but without success (Emo)... Kind regards $\chi$ $\sigma$
... where has been obtained the expression...
$\displaystyle \zeta (s) = \frac{1}{1-2^{1 - s}}\ \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}}\ (1)$
... that allows the effective computation of $\zeta(*)$ in the half plane where $\text{Re} (s) > 0$. It is well known that $\zeta (0) = - \frac{1}{2}$ so that is...
$\displaystyle \lim_{s \rightarrow 0 +} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}} = \frac{1}{2}\ (2)$
What I'm interested about is how to demonstrate (2) independently from (1), i.e. whitout the preliminary knowledge that $\zeta (0) = - \frac{1}{2}$. I spent many hours in attempts but without success (Emo)... Kind regards $\chi$ $\sigma$