A cylinder rotating on a plane with friction and then moving across a frictionless plane to a collision

In summary, the scenario describes a cylinder that initially rotates on a surface with friction, causing it to experience both rotational and linear motion due to the frictional force. As it transitions to a frictionless plane, the cylinder continues to move without further influence from friction, maintaining its linear velocity. Upon encountering a collision, the dynamics of the cylinder's motion will be affected by the interaction with the colliding object, altering its trajectory and rotational state.
  • #1
Jason Ko
21
6
Homework Statement
A cylinder of radius R, mass M and moment of inertia I
about its symmetry axis starts at x = -d. It travels with initial speed Vo towards the
positive x direction, and rotates with angular velocity Vo /R clockwise, as shown in the
figure. For x < 0, the friction is non-zero. For 0 < x < d, the surface is frictionless.
Assume that the cylinder makes an elastic collision with a frictionless immovable wall at
x = d. Find the final translational velocity (magnitude and direction, when it is no longer
changing) of the center of mass of the cylinder, in terms of R, M, I and Vo. Assume that
surface extends to negative infinity.
Relevant Equations
V=rω
I think the angular velocity keep increasing on the plane with friction and the translational velocity keep decreasing due to friction while the total kinetic energy is conserved. When it moves to the frictionless plane, all energy converts to translational kinetic energy and it stop rolling. When it collides with the wall, all energy goes to the cylinder itself since the wall is unmovable. After it moves to the plane with friction, its translational velocity decreases till 0. I know something’s wrong there but where exactly?

IMG_0004.png
 
Last edited by a moderator:
Physics news on Phys.org
  • #2
Jason Ko said:
I think the angular velocity keep increasing on the plane with friction and the translational velocity keep decreasing due to friction
Why?
Remember, friction acts to oppose relative motion of surfaces in contact.
What surfaces in contact are moving relatively to each other?
Jason Ko said:
When it moves to the frictionless plane, all energy converts to translational kinetic energy and it stop rolling.
Why? What torque stops the rotation?
 

Similar threads

Back
Top