- #1
DreamWeaver
- 303
- 0
From the logarithmic integral representation of the Dilogarithm, \(\displaystyle \text{Li}_2(x)\), \(\displaystyle |x| \le 1\), prove the reflection formula for the Dilogarithm. Dilogarithm definition:\(\displaystyle \text{Li}_2(x) = -\int_0^1\frac{\log(1-xt)}{t}\, dt = \sum_{k=1}^{\infty}\frac{x^k}{k^2}\)Dilogarithm reflection formula:\(\displaystyle \text{Li}_2(x) + \text{Li}_2(1-x) = \frac{\pi^2}{6}-\log x\log (1-x)\)Where\(\displaystyle \text{Li}_2(1) = \sum_{k=1}^{\infty}\frac{1}{k^2} = \zeta(2) = \frac{\pi^2}{6}\)Hint:
The clue is in the thread title...