A generalized fractional logarithm integral

In summary, we discussed the integral I(t,a) and its special case I(1,1), seeking a closed form for the integral. We also looked at a simplified version, I(1,a), and attempted to solve it. In the process, we encountered some complex numbers and solved for the special case I(i,a). Finally, we explored the general formula for Dilogarithms involving complex numbers.
  • #1
alyafey22
Gold Member
MHB
1,561
1
I came up with the following integral

\(\displaystyle I(t,a) = \int^t_0 \frac{\log( x^2+a^2)}{1+x}\, dx \)

http://www.mathhelpboards.com/f28/fractional-logarithm-integral-5457-new/we have an attempt to solve the integral succeeded by chisigma for the particular case \(\displaystyle I(1,1)\) , I don't now whether there is a closed form for the integral we can start by a simplified version \(\displaystyle I(1,a)\) , hopefully by the end of this thread we have what we are seeking for . All attempts what so ever are always appreciated and welcomed .
 
Last edited:
Physics news on Phys.org
  • #2
Here is an integral I believe will help us on the process

\(\displaystyle
\begin{align*}
\int^x_0 \frac{\log(1+t)}{1-t}\, dt&= \int^{1}_{1-x} \frac{\log(2-t)}{t}\, dt\,\, \,\,\text{For} \,\, 0\leq x<1 \\ &=\int^{1}_{1-x} \frac{\log (2)+\log\left(1-\frac{t}{2}\right)}{t}\, dt \\
&=\int^{1}_{1-x} \frac{\log (2)}{t}+\int^{1}_{1-x} \frac{\log\left(1-\frac{t}{2}\right)}{t}\, dt \\
&=-\log(1-x)\log(2)+\int^{\frac{1}{2}}_{\frac{1-x}{2}} \frac{\log(1-t)}{t}\, dt \\
&=-\log(1-x)\log(2)- \text{Li}_2 \left(\frac{1}{2} \right) +\text{Li}_2 \left(\frac{1-x}{2}\right) \\
\end{align*}
\)

I believe that the process of solving the general formula will involve some complex numbers , I hope someone will cover for me if I make mistakes .
 
Last edited:
  • #3
Here is an attempt for the special case \(\displaystyle I(1,a)\) where $a$ is real and $0\leq a<1$

we start by the following

\(\displaystyle I(a) = \int^1_0 \frac{\log(1+ax)}{1+x}\, dx \)

\(\displaystyle
\begin{align*}
I'(a) = \int^1_0 \frac{x}{(1+x)(1+ax)}\, dx &= \frac{1}{1-a} \left(\int^1_0\frac{1}{(1+ax)}\, dx -\int^1_0 \frac{1}{(1+x)}\right)\\
&= \frac{1}{1-a} \left(\frac{1}{a} \log(1+a)-\log(2) \right)\\
&= \frac{\log(1+a)}{a(1-a)}-\frac{\log(2)}{a-1} \\
&= \frac{\log(1+a)}{1-a}+\frac{\log(1+a)}{a} -\frac{\log(2)}{1-a} \\

\end{align*}
\)

\(\displaystyle I(a)=-\text{Li}_2 \left(\frac{1}{2} \right) +\text{Li}_2 \left(\frac{1-a}{2}\right)-\text{Li}_2(-a)+C\)using \(\displaystyle I(0)=0\) we obtain \(\displaystyle C=0\)\(\displaystyle I(a) = \int^1_0 \frac{\log(1+ax)}{1+x}\, dx =- \text{Li}_2 \left(\frac{1}{2} \right) +\text{Li}_2 \left(\frac{1-a}{2}\right) -\text{Li}_2(-a)\,\,\,\, \)\(\displaystyle I(ia)+I(-ia) = \int^1_0 \frac{\log(1+a^2x^2)}{1+x}\, dx\)

\(\displaystyle \int^1_0 \frac{\log(1+a^2x^2)}{1+x}\, dx = -2\text{Li}_2 \left(\frac{1}{2} \right) +\text{Li}_2 \left(\frac{1-ai}{2}\right)+ \text{Li}_2 \left(\frac{1+ai}{2}\right) -\text{Li}_2(-ai)-\text{Li}_2(ai)\)

First we solve the following

\(\displaystyle
\begin{align*}
\text{Li}_2 \left(\frac{1-ai}{2}\right)+ \text{Li}_2 \left(\frac{1+ai}{2}\right) &= \frac{\pi^2}{6}- \log \left(\frac{1-ai}{2} \right) \log \left(\frac{1+ai}{2} \right)\\
&=\frac{\pi^2}{6}- \left( \frac{1}{2}\log \left( \frac{1+a^2}{4} \right)- i \arctan (a) \right) \left( \frac{1}{2}\log\left( \frac{1+a^2}{4} \right)+ i\arctan(a) \right)\\
&= \frac{\pi^2}{6}-\frac{1}{4}\log^2 \left( \frac{1+a^2}{4} \right) - \arctan^2 ( a)
\end {align*}
\)

Secondly we solve the following

\(\displaystyle \text{Li}_2(-ai)+\text{Li}_2(ai) = \frac{1}{2} \text{Li}_2 \left( -a^2\right)\)Collecting the results together we obtain \(\displaystyle \int^1_0 \frac{\log(1+a^2x^2)}{1+x}\, dx =-2\text{Li}_2 \left(\frac{1}{2} \right)+\frac{\pi^2}{6}-\frac{1}{4} \log^2 \left( \frac{1+a^2}{4} \right) - \arctan^2 ( a)-\frac{1}{2} \text{Li}_2 \left( -a^2\right)\)

\(\displaystyle \int^1_0 \frac{\log(a^2+x^2)}{1+x}\, dx =-2 \log(a) \log(2) -2\text{Li}_2 \left(\frac{1}{2} \right)+\frac{\pi^2}{6}-\frac{1}{4}\log^2 \left( \frac{1+a^2}{4a^2} \right) - \arctan^2 \left(\frac{1}{a} \right)-\frac{1}{2} \text{Li}_2 \left( \frac{-1}{a^2}\right)\)

For the special case \(\displaystyle I(1,1)\) we have

\(\displaystyle
\begin{align*}
\int^1_0 \frac{\log(1+x^2)}{1+x}\, dx &=-2\text{Li}_2 \left(\frac{1}{2} \right)+\frac{\pi^2}{6}-\frac{1}{4}\log^2 \left( \frac{1}{2} \right) - \frac{\pi^2}{16}-\frac{1}{2} \text{Li}_2 \left( -1 \right)\\
&= \frac{3}{4}\log^2(2) - \frac{\pi^2}{48}
\end{align*}\)
 
  • #4
To solve for the general form we need to generalize the integral on http://www.mathhelpboards.com/f10/generalized-fractional-logarithm-integral-5467/#post24937

\(\displaystyle
\begin{align*}
\int^x_0 \frac{\log(1+at)}{1-t}\, dt&= \int^{1}_{1-x} \frac{\log(1+a-at)}{t}\, dt \\ &=\int^{1}_{1-x} \frac{\log (1+a)+\log\left(1-\frac{at}{1+a}\right)}{t}\, dt \\
&=\int^{1}_{1-x} \frac{\log (1+a)}{t}+\int^{\frac{a}{a+1}}_{\frac{a(1-x)}{a+1}} \frac{\log\left(1-t \right)}{t}\, dt \\

&=-\log(1-x)\log(1+a)- \text{Li}_2 \left( \frac{a}{a+1} \right) +\text{Li}_2 \left(\frac{a-ax}{a+1}\right) \\
\end{align*}\)
 
  • #5
I should now post the full solution , the process is similar to that of post http://www.mathhelpboards.com/f10/generalized-fractional-logarithm-integral-5467/#post24951\(\displaystyle I(a) = \int^t_0 \frac{\log(1+ax)}{1+x}\, dx \)

\(\displaystyle
\begin{align*}
I'(a) = \int^t_0 \frac{x}{(1+x)(1+ax)}\, dx &= \frac{1}{1-a} \left(\int^t_0\frac{1}{(1+ax)}\, dx -\int^t_0 \frac{1}{(1+x)}\right)\\
&= \frac{1}{1-a} \left(\frac{1}{a} \log(1+at)-\log(1+t) \right)\\
&= \frac{\log(1+at)}{a(1-a)}-\frac{\log(1+t)}{a-1} \\
&= \frac{\log(1+at)}{1-a}+\frac{\log(1+at)}{a} -\frac{\log(1+t)}{1-a} \\

\end{align*}
\)

\(\displaystyle I(a)=- \text{Li}_2 \left( \frac{t}{t+1} \right) +\text{Li}_2 \left(\frac{t-ta}{t+1}\right)-\text{Li}_2(-at) +C\)using \(\displaystyle I(0)=0\) we obtain \(\displaystyle C=0\)\(\displaystyle I(a) = \int^t_0 \frac{\log(1+ax)}{1+x}\, dx = - \text{Li}_2 \left( \frac{t}{t+1} \right) +\text{Li}_2 \left(\frac{t-ta}{t+1}\right)-\text{Li}_2(-at) \)\(\displaystyle I(ia)+I(-ia) = \int^t_0 \frac{\log(1+a^2x^2)}{1+x}\, dx\)

\(\displaystyle \int^t_0 \frac{\log(1+a^2x^2)}{1+x}\, dx = -2\text{Li}_2 \left( \frac{t}{t+1} \right) +\text{Li}_2 \left(\frac{t-tai}{t+1}\right)+\text{Li}_2 \left(\frac{t+tai}{t+1}\right)-\text{Li}_2(-ait) -\text{Li}_2(ait) \)

we can simplify a little bit to get

\(\displaystyle \int^t_0 \frac{\log(1+a^2x^2)}{1+x}\, dx = -2\text{Li}_2 \left( \frac{t}{t+1} \right) +\text{Li}_2 \left(\frac{t-tai}{t+1}\right)+\text{Li}_2 \left(\frac{t+tai}{t+1}\right)-\frac{1}{2}\text{Li}_2(-a^2t^2) \)I still don't know if I can simplify

\(\displaystyle \text{Li}_2 \left(\frac{t-tai}{t+1}\right)+\text{Li}_2 \left(\frac{t+tai}{t+1}\right)\)

Actually I am looking for a general formula for the following

\(\displaystyle \text{Li}_2(z) + \text{Li}_2( \bar{z}) \) \(\displaystyle \,\,\, \text{For} \,\,\,0 \leq \text{Re}(z) \leq 1\)
 
  • #6
First we shall treat Dilogarithms that involve complex numbers

we start by the following

\(\displaystyle
\begin{align*}
\text{Li}_2(i) &= \sum_{k\geq 1} \frac{i^k}{k^2}\\
&= 1+\frac{i}{2^2}-\frac{1}{3^2}+\frac{1}{4^2}+\cdots \\
&= i-\frac{1}{2^2}-\frac{i}{3^2}+\frac{1}{4^2}+\cdots \\
&= -\frac{1}{4}\left( 1-\frac{1}{2^2}+\frac{1}{4^2}+\cdots \right) +i\left(1-\frac{1}{3^2}+\frac{1}{5^2}+\cdots \right) \\
&=\frac{-1}{4}\sum_{k\geq 1}\frac{(-1)^{k-1}}{k^2}+i \sum_{k\geq 0}\frac{(-1)^k}{(2k+1)^2}\\
&=-\frac{\pi^2}{48}+iG\,\,\,\, \text{where G is the Catalan's constant }
\end{align*}
\)

G : Catalan's constant
 
  • #7
We shall now evaluate \(\displaystyle \text{Li}_2(1+i)\)

\(\displaystyle
\begin{align*}

\text{Li}_2(1+i)&= -\int^{1+i}_0 \frac{\log(1-x)}{x}\, dx \\
&=-\int^{1}_{-i} \frac{\log(x)}{1-x}\, dx \\
&=\log(-i)\log(1+i)-\int^{1}_{-i}\frac{\log(1-x)}{x}\, dx \\
&=\frac{i \pi}{2}\left( \log(\sqrt{2}+i\frac{\pi}{4}\right)+\text{Li}_2(1)-\text{Li}_2(-i)\\
&=\frac{i \pi \log(2)}{4}-\frac{\pi^2}{8}+\text{Li}_2(1)+\text{Li}_2(i)-\frac{1}{2}\text{Li}_2(-1)\\
&=\frac{i \pi \log(2)}{4}-\frac{\pi^2}{8}+\frac{\pi^2}{6}-\frac{\pi^2}{48}+iG+\frac{\pi^2}{24}\\
&=\frac{\pi^2}{16}+ \left( \frac{\pi \log(2)}{4}+G\right)i
\end{align*}
\)

Similiarliy we conclude that

\(\displaystyle \text{Li}_2(1-i)=\overline{\text{Li}_2(1+i)}=\frac{\pi^2}{16}- \left( \frac{\pi \log(2)}{4}+G\right)i \)
 
  • #8
Conjuncture

  • \(\displaystyle \overline{\text{Li}_2(z)}=\text{Li}_2(\bar{z})\)

Corollary

  • \(\displaystyle \frac{\text{Li}_2(z)+\text{Li}_2(\bar{z})}{2} = \text{Re} \left( \text{Li}_2(z)\right)\)
 
  • #9
We can prove the conjuncture for purely imaginary complex numbers

Consider the following with \(\displaystyle x\in \mathbb{R}\)

\(\displaystyle
\begin{align*}
\text{Li}_2(ix) &= -\int^{ix}_0 \frac{\log(1-t)}{t}\,dt\\

&= -\int^x_0 \frac{\log(1-it)}{t}\,dt\\
&= -\int^x_0 \frac{\log(\sqrt{1+t^2})}{t}\,dt+ i \int^x_0 \frac{\arctan(t)}{t}\, dt \\

\end{align*}

\)

Similarly we can show that

\(\displaystyle
\begin{align*}
\text{Li}_2(-ix) &= -\int^{-ix}_0 \frac{\log(1-t)}{t}\,dt\\

&= -\int^x_0 \frac{\log(1+it)}{t}\,dt\\
&= -\int^x_0 \frac{\log(\sqrt{1+t^2})}{t}\,dt- i \int^x_0 \frac{\arctan(t)}{t}\, dt \\

\end{align*}

\)

Hence \(\displaystyle \text{Li}_2(ix) = \overline{\text{Li}_2(-ix)}\)

I shall try to generalize for any complex number $z$ in the next post .
 
Last edited:
  • #10
Now to generalize , consider the complex number \(\displaystyle z\)

\(\displaystyle
\begin{align*}

\text{Li}_2(z) &= -\int^z_0 \frac{\log(1-t)}{t}\, dt \\

&= -\int^{|z|^2}_0 \frac{ \log \left(1-\frac{t}{\overline{z}} \right)}{t}\, dt \\

\end{align*}
\)

On the other hand

\(\displaystyle
\begin{align*}

\text{Li}_2(\overline{z}) &= -\int^{\overline{z}}_0 \frac{\log(1-t)}{t}\, dt \\

&= -\int^{|z|^2}_0 \frac{ \log \left(1-\frac{t}{z} \right)}{t}\, dt \\

\end{align*}
\)

Now consider

\(\displaystyle
\begin{align*}

\log \left(1-\frac{t}{\overline{z}} \right) &= \log \left(1-\frac{z t}{|z|^2} \right) \\

\end{align*}
\)\(\displaystyle
\begin{align*}

\log \left(1-\frac{t}{z} \right) &= \log \left(1-\frac{\overline{z} t}{|z|^2} \right) \\

\end{align*}
\)

Clearly the two complex functions have the same real part and opposite imaginary parts because of the oddness of the \(\displaystyle \arctan \) function which proves our conjecture.
 
  • #11
I think posting this concludes the thread

\(\displaystyle \int^t_0 \frac{\log(1+a^2x^2)}{1+x}\, dx = -2\text{Li}_2 \left( \frac{t}{t+1} \right) +2\, \text{Re} \left( \text{Li}_2 \left(\frac{t+tai}{t+1}\right) \right)-\frac{1}{2}\text{Li}_2(-a^2t^2)\)
 

FAQ: A generalized fractional logarithm integral

What is a generalized fractional logarithm integral?

A generalized fractional logarithm integral is a mathematical function that is used to evaluate the integral of a fractional power of the logarithm function. It is defined as La,b(x) = ∫1x lna(t) (ln(t))b dt, where a and b are real numbers and x is the upper limit of integration.

What is the significance of a generalized fractional logarithm integral in mathematics?

Generalized fractional logarithm integrals have applications in various areas of mathematics such as number theory, probability theory, and complex analysis. They are also useful in solving differential equations and evaluating special functions.

How is a generalized fractional logarithm integral different from a regular logarithm integral?

A regular logarithm integral is defined as ∫1x ln(t) dt, while a generalized fractional logarithm integral includes additional parameters a and b in the integrand. This makes it a more versatile function that can handle a wider range of integrals.

What are some properties of a generalized fractional logarithm integral?

Some properties of a generalized fractional logarithm integral include linearity, symmetry, and the fact that it is a non-elementary integral. It also has connections to other special functions such as the gamma function and the Riemann zeta function.

How is a generalized fractional logarithm integral evaluated?

There is no general formula for evaluating a generalized fractional logarithm integral. However, it can be evaluated using numerical methods such as Simpson's rule or by expressing it in terms of other special functions. In some cases, it may also be possible to simplify the integral using algebraic or trigonometric identities.

Similar threads

Back
Top