- #1
Feynman's fan
- 14
- 0
Here is the problem at hand:
[itex]
\lim\limits_{n\to\infty} \frac{\sqrt{n}}{2^{2n}} \binom {2n} {n+\lfloor x\sqrt{n} \rfloor} = \frac{1}{\sqrt{\pi}} e^{-x^2}
[/itex]
I've tried to evaluate the limit using the Stirling's formula, many things canceled out yet I got stuck.
Thanks a lot for any help or hints.
ADDED:
Here is what I did:
I was trying to squeeze the limit by using the Stirling's formula, which is:
[itex]\sqrt{2\pi}n^{n+\frac{1}{2}}e^{-n}<n!<\sqrt{2\pi}n^{n+\frac{1}{2}}e^{-n+\frac{1}{12(n-1)}}[/itex].
So I started with the RHS of the squeezing:
For simplicity: let [itex]\lfloor x\sqrt{n} \rfloor:=p[/itex].
Then
[itex]
\begin{align}
\frac{\sqrt{n}}{2^{2n}} \binom {2n} {n+p} &= \frac{\sqrt{n}(2n)!}{2^{2n}(n+p)!(n-p)!}
\\ &< \frac{\sqrt{n}\sqrt{2\pi}(2n)^{(2n)+\frac{1}{2}}e^{-(2n)+\frac{1}{12((2n)-1)}}}{2^{2n}\sqrt{2\pi}(n+p)^{(n+p)+\frac{1}{2}}e^{-(n+p)}\sqrt{2\pi}(n-p)^{(n-p)+\frac{1}{2}}e^{-(n-p)}}
\\ &< \frac{n^{2n+1}e^{\frac{1}{12(2n-1)}}}{\sqrt{\pi}(n+p)^{n+p+\frac{1}{2}}(n-p)^{n-p+\frac{1}{2}}}
\\ &< ?
\end{align}
[/itex]
[itex]
\lim\limits_{n\to\infty} \frac{\sqrt{n}}{2^{2n}} \binom {2n} {n+\lfloor x\sqrt{n} \rfloor} = \frac{1}{\sqrt{\pi}} e^{-x^2}
[/itex]
I've tried to evaluate the limit using the Stirling's formula, many things canceled out yet I got stuck.
Thanks a lot for any help or hints.
ADDED:
Here is what I did:
I was trying to squeeze the limit by using the Stirling's formula, which is:
[itex]\sqrt{2\pi}n^{n+\frac{1}{2}}e^{-n}<n!<\sqrt{2\pi}n^{n+\frac{1}{2}}e^{-n+\frac{1}{12(n-1)}}[/itex].
So I started with the RHS of the squeezing:
For simplicity: let [itex]\lfloor x\sqrt{n} \rfloor:=p[/itex].
Then
[itex]
\begin{align}
\frac{\sqrt{n}}{2^{2n}} \binom {2n} {n+p} &= \frac{\sqrt{n}(2n)!}{2^{2n}(n+p)!(n-p)!}
\\ &< \frac{\sqrt{n}\sqrt{2\pi}(2n)^{(2n)+\frac{1}{2}}e^{-(2n)+\frac{1}{12((2n)-1)}}}{2^{2n}\sqrt{2\pi}(n+p)^{(n+p)+\frac{1}{2}}e^{-(n+p)}\sqrt{2\pi}(n-p)^{(n-p)+\frac{1}{2}}e^{-(n-p)}}
\\ &< \frac{n^{2n+1}e^{\frac{1}{12(2n-1)}}}{\sqrt{\pi}(n+p)^{n+p+\frac{1}{2}}(n-p)^{n-p+\frac{1}{2}}}
\\ &< ?
\end{align}
[/itex]
Last edited: