- #1
polygamma
- 229
- 0
Show that $$\int_{0}^{1} \log (\sin \pi x) \log \Gamma(x) \ dx = \frac{\log 2 \pi}{2} \int_{0}^{1} \log (\sin \pi x) \ dx - \frac{\zeta(2)}{4} = - \frac{\log (2 \pi ) \log (2)}{2} - \frac{\pi^{2}}{24}$$
Last edited: