- #1
Artusartos
- 247
- 0
Homework Statement
Suppose [itex]X_1, ... , X_n[/itex] are iid with pdf [itex]f(x,\theta)=2x/(\theta^2)[/itex], [itex] 0<x\leq\theta[/itex], zero elsewhere. Note this is a nonregular case. Find:
a)The mle [itex]\hat{\theta}[/itex] for [itex]\theta[/itex].
b)The constant c so that [itex]E(c\hat{\theta})=\theta[/itex].
c) The mle for the median of the distribution.
Homework Equations
The Attempt at a Solution
a) I got [itex]\hat{\theta} = max\{X_1, ... ,X_2\}=Y_n[/itex]
b) I was stuck here...
I need to find the pdf for [itex]Y_n[/itex] using the order statistics formula, right?
So this is what I got...[itex]f_n(y_n)=\frac{n!}{(n-1)!(n-n)!}[F(y_n)]^{n-1}[1-F(y_n)]^{n-n}f(y_n)[/itex]
= [itex]n(F(y_n))^{n-1}f(y_n)= n(\frac{-2x}{\theta})^{n-1}(\frac{2x}{\theta^2}) [/itex]
= [itex]n(\frac{-2x}{\theta})^{n}(\frac{\theta}{-2x})(\frac{2x}{\theta^2}) [/itex]
= [itex]n(\frac{-1}{\theta})(\frac{-2x}{\theta})^n [/itex]
So now I want to find the expected value, but I'm not sure what the boundaries need to be for the integral...so can anybody help me?
Thanks in advance