- #1
karlzr
- 131
- 2
There is a second order nonhomogeneous equation of motion with nonzero initial condition given at ##t=-\infty##:
##D^2 y(x)=f(x)## with ##y(-\infty)=e^{-i x}##
where I have used the shorthand notation ##D^2## for the full differential operator. Also I have the two solutions ##y_1(x)## and ##y_2(x)## to the homogeneous equation with ##y_1(x \to -\infty) \approx e^{-ix}## and ##y_2(x \to -\infty) \approx e^{ix}##. So how do I construct the particular solution using ##y_1(x)## and ##y_2(x)##?
I know Green's function can be constructed using the two homogeneous solutions. So the naive solution I got is
##y(x)=y_1(x)+\int^x_{-\infty} dx' G(x,x')f(x')## with
##G(x,x')=\frac{y_1(x)y_2(x')-y_2(x)y_1(x')}{W(y_2(x'),y_1(x'))}##.
Is it wrong? since I get some ridiculous result (divergence) when I use this solution to do calculation, because the lower bound is ##-\infty##.
##D^2 y(x)=f(x)## with ##y(-\infty)=e^{-i x}##
where I have used the shorthand notation ##D^2## for the full differential operator. Also I have the two solutions ##y_1(x)## and ##y_2(x)## to the homogeneous equation with ##y_1(x \to -\infty) \approx e^{-ix}## and ##y_2(x \to -\infty) \approx e^{ix}##. So how do I construct the particular solution using ##y_1(x)## and ##y_2(x)##?
I know Green's function can be constructed using the two homogeneous solutions. So the naive solution I got is
##y(x)=y_1(x)+\int^x_{-\infty} dx' G(x,x')f(x')## with
##G(x,x')=\frac{y_1(x)y_2(x')-y_2(x)y_1(x')}{W(y_2(x'),y_1(x'))}##.
Is it wrong? since I get some ridiculous result (divergence) when I use this solution to do calculation, because the lower bound is ##-\infty##.