- #1
Artusartos
- 247
- 0
Classify the abelian groups of order 32.
a) In each case give the annihilator of the group along with [tex]dim_{Z_2} \frac{ker \mu_{2^s}}{ker \mu_{2^{s-1}}}[/tex]
for s=1,...,5. Where [tex]\mu_k(x) = kx [/tex] for all k.
b) If you know the annihilator of each of these groups, how many values of s (beginning with s=1) are needed to tell them apart?
My answer:
The abelian groups of order 32:
[tex]Z_{32}[/tex]
[tex] Z_{16} \bigoplus Z_2 [/tex]
[tex] Z_8 \bigoplus Z_4[/tex]
[tex] Z_8 \bigoplus Z_2 \bigoplus Z_2 [/tex]
[tex] Z_4 \bigoplus Z_2 \bigoplus Z_2 \bigoplus Z_2 [/tex]
[tex] Z_2 \bigoplus Z_2 \bigoplus Z_2 \bigoplus Z_2 \bigoplus Z_2[/tex]
For part a, if we look at [tex]Z_{32}[/tex], we have
[tex]dim_{Z_2} \frac{ker \mu_{2^s}}{ker \mu_{2^{s-1}}}[/tex]
=[tex]dim_{Z_2} \frac{Z_\bar{16}}{Z_\bar{32}}[/tex]
I'm kind of stuck now...can anybody please give me a hint?
Thanks in advance
a) In each case give the annihilator of the group along with [tex]dim_{Z_2} \frac{ker \mu_{2^s}}{ker \mu_{2^{s-1}}}[/tex]
for s=1,...,5. Where [tex]\mu_k(x) = kx [/tex] for all k.
b) If you know the annihilator of each of these groups, how many values of s (beginning with s=1) are needed to tell them apart?
My answer:
The abelian groups of order 32:
[tex]Z_{32}[/tex]
[tex] Z_{16} \bigoplus Z_2 [/tex]
[tex] Z_8 \bigoplus Z_4[/tex]
[tex] Z_8 \bigoplus Z_2 \bigoplus Z_2 [/tex]
[tex] Z_4 \bigoplus Z_2 \bigoplus Z_2 \bigoplus Z_2 [/tex]
[tex] Z_2 \bigoplus Z_2 \bigoplus Z_2 \bigoplus Z_2 \bigoplus Z_2[/tex]
For part a, if we look at [tex]Z_{32}[/tex], we have
[tex]dim_{Z_2} \frac{ker \mu_{2^s}}{ker \mu_{2^{s-1}}}[/tex]
=[tex]dim_{Z_2} \frac{Z_\bar{16}}{Z_\bar{32}}[/tex]
I'm kind of stuck now...can anybody please give me a hint?
Thanks in advance