- #1
user1139
- 72
- 8
- Homework Statement
- See below.
- Relevant Equations
- See below.
The curl is defined using Cartersian coordinates as
\begin{equation}
\nabla\times A =
\begin{vmatrix}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_x & A_y & A_z
\end{vmatrix}.
\end{equation}
However, what are the physical consequences, if any, if I were to define the curl instead as
\begin{equation}
\nabla\times A =
\begin{vmatrix}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_x & A_y & A_z \\
\hat{x} & \hat{y} & \hat{z}
\end{vmatrix}\,?
\end{equation}
\begin{equation}
\nabla\times A =
\begin{vmatrix}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_x & A_y & A_z
\end{vmatrix}.
\end{equation}
However, what are the physical consequences, if any, if I were to define the curl instead as
\begin{equation}
\nabla\times A =
\begin{vmatrix}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_x & A_y & A_z \\
\hat{x} & \hat{y} & \hat{z}
\end{vmatrix}\,?
\end{equation}