- #1
aalma
- 46
- 1
- Homework Statement
- Let ##f## be continuous on ##[a, b] ## and differentiable on ##(a, b)## and assume there is ##c\in(a, b) ## such that ##(f(c) - f(a))(f(b) - f(c)) <0## then there exists ##t\in(a, b) ## such that ##f'(t) =0##.
- Relevant Equations
- ##(f(c) - f(a))((f)(b) - f(c)) <0##
##(f(c) - f(a))((f)(b) - f(c)) <0## tells us that there are two cases:
##f(c) >f(a), f(b) ##
##f(c) <f(a), f(b) ##.
I guess we need to define a new function here that let us use the Rolle's theorem..
But it is not clear enough how to do so.
##f(c) >f(a), f(b) ##
##f(c) <f(a), f(b) ##.
I guess we need to define a new function here that let us use the Rolle's theorem..
But it is not clear enough how to do so.