- #1
mlazos
- 49
- 0
Homework Statement
[tex]z=e^{i(\kappa x-\omega t)[/tex]
[tex]\theta=x^2+t[/tex] and [tex]\phi=x-t[/tex]
find [tex]\frac{\partial z}{\partial \theta}[/tex] and [tex]\frac{\partial z}{\partial \phi}[/tex] in terms of x and t only.
Homework Equations
The Attempt at a Solution
for the first partial I thought to solve the [tex]\theta=x^2+t[/tex] for t and to substitute to the z and then to use the chain rule. So to do this
[tex]t=\theta-x^2[/tex] and so [tex]z=e^{i(\kappa x-\omega (\theta-x^2))}[/tex]
then in order to find [tex] \frac{\partial z}{\partial \theta}[/tex] I will do this [tex]\frac{\partial z}{\partial \theta}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial \theta}[/tex]
Now [tex]\frac{\partial z}{\partial x}=e^{i(\kappa x-\omega (\theta-x^2))}(i(\kappa x-\omega (\theta-x^2)))'=e^{i(\kappa x-\omega (\theta-x^2))}(i\kappa - 2\omega x)[/tex]
the [tex]\frac{\partial x}{\partial \theta}=\frac{1}{2x}[/tex]
so [tex]\frac{\partial z}{\partial \theta}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial \theta}=\frac{e^{i(\kappa x-\omega (\theta-x^2))}(i\kappa - 2\omega x)}{2x}[/tex]
Now we substitute again the t and we get
[tex]\frac{\partial z}{\partial \theta}=\frac{e^{i(\kappa x-\omega t)}(i\kappa - 2\omega x)}{2x}[/tex]
For the second partial I follow the same way
[tex]x=\phi + t[/tex] I substitute to z and I get [tex]z=e^{i(\kappa (\phi + t) -\omega t)}[/tex]
and then [tex]\frac{\partial z}{\partial \phi}=\frac{\partial z}{\partial t}\frac{\partial t}{\partial \phi}[/tex]
We find that [tex]\frac{\partial t}{\partial \phi}=-1[/tex] and
[tex]\frac{\partial z}{\partial t}=e^{i(\kappa (\phi + t) -\omega t)}(i(\kappa (\phi + t) -\omega t))'=e^{i(\kappa (\phi + t) -\omega t)}(i \kappa - \omega)[/tex]
so [tex]\frac{\partial z}{\partial \phi}=\frac{\partial z}{\partial t}\frac{\partial t}{\partial \phi}=-e^{i(\kappa (\phi + t) -\omega t)}(i \kappa - \omega)[/tex]
I am not sure if this is the solution, i need a second opinion. I am a mathematician and I need someone else to tell me if I am wrong and where. Thank you for your time. Please read carefully before to answer. Thank you