- #1
John O' Meara
- 330
- 0
The depth of water x at any time t in a tank is given by
[tex] A\frac{dx}{dt}= B-c\sqrt{x}\\ [/tex],
where A, b and C are constants. Initially x=0; show that [tex] C^2t=2AB\ln{\frac{B}{B_C\sqrt{x}}}-2AC\sqrt{x}\\ [/tex]
To solve this let [tex]x= y^2\\ [/tex].
Then [tex] \int \frac{A}{B-C\sqrt{x}} = \int dt = \int \frac{2Ay}{B-Cy}dy \\ [/tex].
Let u=B-Cy, therefore [tex] y=\frac{B-u}{c}\\ [/tex], therefore the integral is
[tex] -2A \int \frac{B-u}{C^2u} du = \frac{-2A}{C^2} \int \frac{B-u}{u} du \\ [/tex].
which [tex] = \frac{-2AB}{C^2} \int \frac{1}{u} du + \frac{2A}{C^2} \int du \\ [/tex].
Therefore we have [tex]\frac{-2AB}{C^2}\ln(u) + \frac{2A}{C^2}u \\[/tex]. We have [tex] \frac{-2AB}{C^2} \ln{B_Cy} + \frac{2A}{C^2}(B-Cy) \\[/tex].
Which implies [tex] C^2t = -AB\ln{\frac{B}{C\sqrt{x}}} + 2A(B-C\sqrt{x})\\ [/tex].
As you can see I get a different answer. I integrated by parts also to get a different result. Please help. Thanks.
[tex] A\frac{dx}{dt}= B-c\sqrt{x}\\ [/tex],
where A, b and C are constants. Initially x=0; show that [tex] C^2t=2AB\ln{\frac{B}{B_C\sqrt{x}}}-2AC\sqrt{x}\\ [/tex]
To solve this let [tex]x= y^2\\ [/tex].
Then [tex] \int \frac{A}{B-C\sqrt{x}} = \int dt = \int \frac{2Ay}{B-Cy}dy \\ [/tex].
Let u=B-Cy, therefore [tex] y=\frac{B-u}{c}\\ [/tex], therefore the integral is
[tex] -2A \int \frac{B-u}{C^2u} du = \frac{-2A}{C^2} \int \frac{B-u}{u} du \\ [/tex].
which [tex] = \frac{-2AB}{C^2} \int \frac{1}{u} du + \frac{2A}{C^2} \int du \\ [/tex].
Therefore we have [tex]\frac{-2AB}{C^2}\ln(u) + \frac{2A}{C^2}u \\[/tex]. We have [tex] \frac{-2AB}{C^2} \ln{B_Cy} + \frac{2A}{C^2}(B-Cy) \\[/tex].
Which implies [tex] C^2t = -AB\ln{\frac{B}{C\sqrt{x}}} + 2A(B-C\sqrt{x})\\ [/tex].
As you can see I get a different answer. I integrated by parts also to get a different result. Please help. Thanks.
Last edited: