A "spiral" in the Complex plane

Hill
Messages
735
Reaction score
575
Homework Statement
Starting from the origin, go one unit east, then the same length north, then (1/2) of the previous length west, then (1/3) of the previous length south, then (1/4) of the previous length east, and so on. What point does this “spiral” converge to?
Relevant Equations
series sum
I understand that the "spiral" converges to 1+i-1/2-i/3!+1/4!+i/5!-1/6!-i/7!... .
It splits into two: one for Re, 1-1/2+1/4!-1/6!..., and the other for Im, 1-1/3!+1/5!-1/7!... .
Any hints on how to compute them?
 
Physics news on Phys.org
What are <br /> \displaystyle\sum_{n=0}^\infty \dfrac{(-1)^n x^{2n}}{(2n)!} and \displaystyle\sum_{n=0}^\infty \dfrac{(-1)^n x^{2n+1}}{(2n+1)!} when x = 1?
 
pasmith said:
What are <br /> \displaystyle\sum_{n=0}^\infty \dfrac{(-1)^n x^{2n}}{(2n)!} and \displaystyle\sum_{n=0}^\infty \dfrac{(-1)^n x^{2n+1}}{(2n+1)!} when x = 1?
##\cos## and ##\sin##, of course. Thanks!
 
Or, even better:
$$
\sum_{n=0}^\infty \frac{(ix)^n}{n!}
$$
 
Orodruin said:
Or, even better:
$$
\sum_{n=0}^\infty \frac{(ix)^n}{n!}
$$
Yes. Straight.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top