I A strange definition for Hermitian operator

struggling_student
Messages
9
Reaction score
1
In lecture notes at a university (I'd rather not say which university) the following definition for Hermitian is given:

An operator is Hermitian if and only if it has real eigenvalues.


I find it questionable because I thought that non-Hermitian operators can sometimes have real eigenvalues. We can correctly say that Hermitian operators can only have real eigenvalues but that does not define the operator, right? Is it some kind of convention or is it just plain wrong? Alas the physicists often don't understand the difference between an implication and equivalence.
 
Physics news on Phys.org
The statement which was give to you is wrong. One can find a non-hermitean matrix with real eigenvalues.
 
Counterexample: $$
\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix} $$
has eigenvalue 1 with multiplicty 2. It's not Hermitian.
 
  • Like
Likes Demystifier and vanhees71
A matrix is hermitian if it has real eigenvalues and you can diagonalize it with a unitary transformation. This means that if and only if matrix ##A## is hermitian, there exists a matrix ##U## such that ##U^\dagger U = UU^\dagger = 1## and ##U^\dagger A U## is a diagonal matrix with real numbers on the diagonal.
 
  • Like
Likes Demystifier and vanhees71
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top