A sum involving the central binomial coefficients

In summary, a sum involving the central binomial coefficients is a mathematical expression that sums up the values of the coefficients in the expansion of the binomial (1+x)^n. The formula for this sum is (1+1)^n or 2^n, and it plays a crucial role in determining the overall result of the sum. This sum has various real-world applications and there are other sums involving binomial coefficients, such as Vandermonde's identity and Chu-Vandermonde identity.
  • #1
polygamma
229
0
Wolfram MathWorld states that $$ \sum_{n=1}^{\infty} \frac{1}{n^{3} \binom{2n}{n}} = \frac{ \pi \sqrt{3}}{18} \Big[ \psi_{1} \left(\frac{1}{3} \right) - \psi_{1} \left(\frac{2}{3} \right) \Big]- \frac{4}{3} \zeta(3) $$

where $\psi_{1}(x)$ is the trigamma function. But I can't get my answer in that form.Using the Taylor expansion $ \displaystyle \arcsin^{2}(x) = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^{2} \binom{2n}{n}} (2x)^{2n}$,

$$ \sum_{n=1}^{\infty} \frac{1}{n^{3} \binom{2n}{n}} = 4 \int_{0}^{\frac{1}{2}} \frac{\arcsin^{2}(x)}{x} \ dx $$

Then integrating by parts

$$ 4 \int_{0}^{\frac{1}{2}} \frac{\arcsin^{2}(x)}{x} \ dx = \frac{\pi^{2}}{9} \ln \left(\frac{1}{2} \right) - 8 \int_{0}^{\frac{1}{2}} \frac{\arcsin (x) \ln (x)}{\sqrt{1-x^{2}}} \ dx$$

$$ = - \frac{\pi^{2}}{9} \ln 2 - 8 \int_{0}^{\frac{\pi}{6}} u \ln (\sin u ) \ du = - 8 \ln 2 \int_{0}^{\frac{\pi}{6}} u \ du - 8\int_{0}^{\frac{\pi}{6}} u \ln (\sin u ) \ du$$

$$ = - 8 \int_{0}^{\frac{\pi}{6}} u \ln ( 2 \sin u ) \ du = -8 \ \text{Re} \int_{0}^{\frac{\pi}{6}} u \ln (1-e^{2iu}) \ du = 8 \ \text{Re} \int_{0}^{\frac{\pi}{6}} u \sum_{n=1}^{\infty} \frac{e^{2in u}}{n} \ du $$

$$ = 8 \ \sum_{n=1}^{\infty} \frac{1}{n} \int_{0}^{\frac{\pi}{6}} u \cos (2nu) \ du = \frac{2 \pi}{3} \sum_{n=1}^{\infty} \frac{\sin (\frac{n \pi}{3})}{n^{2}} + 2 \sum_{n=1}^{\infty} \frac{\cos (\frac{n \pi}{3})}{n^{3}} - 2 \zeta(3) $$

$$ = \frac{2 \pi}{3} \Bigg( \frac{\sqrt{3}}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+1)^{2}} + \frac{\sqrt{3}}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+2)^{2}} - \frac{\sqrt{3}}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+4)^{2}} - \frac{\sqrt{3}}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+5)^{2}} \Bigg)$$

$$ + \ 2 \Bigg( \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+1)^{3}} - \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+2)^{3}} - \sum_{n=0}^{\infty} \frac{1}{(6n+3)^{3}} - \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+4)^{3}} $$

$$ + \ \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+5)^{3}} + \sum_{n=1}^{\infty} \frac{1}{(6n)^{3}} \Bigg) - 2 \zeta(3)$$

$$ = \frac{\pi \sqrt{3}}{108} \Bigg( \psi_{1} \left(\frac{1}{6} \right) + \psi_{1} \left(\frac{1}{3} \right) - \psi_{1} \left(\frac{2}{3} \right) - \psi_{1}\left(\frac{5}{6} \right) \Bigg) + \frac{1}{432} \Bigg( - \psi_{2} \left(\frac{1}{6} \right) + \psi_{2} \left(\frac{1}{3} \right) -28 \zeta(3)$$

$$ + \psi_{2} \left(\frac{2}{3} \right) - \psi_{2} \left(\frac{5}{6} \right) + 4 \zeta(3)\Bigg) - 2 \zeta (3) $$EDIT:

Using the duplication formula for the trigamma function,

$$ \psi_{1} \left(\frac{1}{6} \right) + \psi_{1} \left(\frac{1}{3} \right) - \psi_{1} \left(\frac{2}{3} \right) - \psi_{1}\left(\frac{5}{6} \right) = 4 \psi_{1} \left(\frac{1}{3} \right) -\psi_{1} \left(\frac{2}{3} \right) + \psi_{1} \left(\frac{1}{3} \right) -\psi_{1} \left(\frac{2}{3} \right) - 4 \psi_{1} \left(\frac{2}{3} \right) + \psi_{1} \left(\frac{1}{3} \right)$$

$$ = 6 \psi_{1} \left(\frac{1}{3} \right) - 6 \psi_{1} \left(\frac{2}{3} \right) $$Then

$$ \sum_{n=1}^{\infty} \frac{1}{n^{3} \binom{2n}{n}} = \frac{\sqrt{3} \pi}{18} \Bigg( \psi_{1} \left(\frac{1}{3} \right) - \psi_{1} \left(\frac{2}{3} \right) \Bigg) +
\frac{1}{432} \Bigg( - \psi_{2} \left(\frac{1}{6} \right) + \psi_{2} \left(\frac{1}{3} \right) + \psi_{2} \left(\frac{2}{3} \right) - \psi_{2} \left(\frac{5}{6} \right) -24 \zeta(3)\Bigg) $$

$$ - 2 \zeta (3) $$So what I need to show is that

$$ -\psi_{2} \left(\frac{1}{6} \right) + \psi_{2} \left(\frac{1}{3} \right) + \psi_{2} \left(\frac{2}{3} \right) - \psi_{2} \left(\frac{5}{6} \right) = 312 \zeta(3) $$
 
Last edited:
Physics news on Phys.org
  • #2
Hi RV! :DWhen you get to the log-trig integral form, I'd recommend converting it into the form:

\(\displaystyle \int_0^{\pi/6}y\log(2\sin y)\,dy=\frac{1}{4}\int_0^{\pi/3}x\log\left(2\sin\frac{x}{2}\right)\,dx\)\(\displaystyle -\log\left(2\sin\frac{x}{2}\right)=\frac{d}{dx} \text{Cl}_2(x)\)

And, in terms of Clausen Functions,\(\displaystyle \int_0^{\theta}x\log\left(2\sin\frac{x}{2}\right)\,dx=\zeta(3)-\theta\text{Cl}_2(\theta)-\text{Cl}_3(\theta)\)\(\displaystyle \Rightarrow\)\(\displaystyle \int_0^{\pi/3}x\log\left(2\sin\frac{x}{2}\right)\,dx=\zeta(3)-\frac{\pi}{3}\text{Cl}_2\left(\frac{\pi}{3}\right)-\text{Cl}_3\left(\frac{\pi}{3}\right)\)
Now the polygamma part:\(\displaystyle \psi_1\left(\frac{1}{3}\right)=\frac{2\pi^2}{3}+3 \sqrt{3}\text{Cl}_2\left(\frac{2\pi}{3}\right)\)\(\displaystyle \psi_1\left(\frac{2}{3}\right)=\frac{2\pi^2}{3}-3 \sqrt{3}\text{Cl}_2\left(\frac{2\pi}{3}\right)\)So\(\displaystyle \psi_1\left(\frac{1}{3}\right)-
\psi_1\left(\frac{2}{3}\right)=6 \sqrt{3}\text{Cl}_2\left(\frac{2\pi}{3}\right)\)Now apply the duplication formula for the Clausen function (post #3 here --> Clausen functions (and related series, functions, integrals) : Tutorials ):\(\displaystyle \text{Cl}_2(2\theta)=2\, \text{Cl}_2(\theta)-2\, \text{Cl}_2(\pi-\theta)\)Set \(\displaystyle \theta = \pi/3\,\) to obtain

\(\displaystyle \text{Cl}_2\left(\frac{2\pi}{3}\right)=\frac{2}{3}\text{Cl}_2\left(\frac{\pi}{3}\right)\)So\(\displaystyle \psi_1\left(\frac{1}{3}\right)-
\psi_1\left(\frac{2}{3}\right)=6 \sqrt{3}\text{Cl}_2\left(\frac{2\pi}{3}\right)=4 \sqrt{3}\text{Cl}_2\left(\frac{\pi}{3}\right)\)Plugging this back into the log-trig integral gives\(\displaystyle \int_0^{\pi/3}x\log\left(2\sin\frac{x}{2}\right)\,dx=\zeta(3)-\frac{\pi}{3}\text{Cl}_2\left(\frac{\pi}{3}\right)-\text{Cl}_3\left(\frac{\pi}{3}\right)=\)\(\displaystyle \zeta(3)-\frac{\pi}{12\sqrt{3}}\left[\psi_1\left(\frac{1}{3}\right)-
\psi_1\left(\frac{2}{3}\right)\right]-\text{Cl}_3\left(\frac{\pi}{3}\right)\)The remaining, third-order Clausen function can treated similarly.

Writing in a bit of a rush, so hope I haven't made any silly errors here...

The full proof is long and involved, but some time, when I get times, I'll post details about how to evaluate all higher order polygamma functions - with rational arguments of 1/2, 1/3, 2/3, 1/4, 3/4, 1/6, and 5/6 - in terms of Clausen functions.

Gotta dash... (Bandit)
 
  • #3
By using the duplication formula for $\psi_{2}(x)$ multiple times I imagine it's possible to show that

$$-\psi_{2} \left(\frac{1}{6} \right) + \psi_{2} \left(\frac{1}{3} \right) + \psi_{2} \left(\frac{2}{3} \right) - \psi_{2} \left(\frac{5}{6} \right) = 312 \zeta(3) $$

Then my evaluation is complete without having used properties of the Clausen functions.
 
Last edited:
  • #4
Hi RV! ;)

I'll need to double check this at some point, just to make sure I haven't made any silly mistakes, but even if so, you'll see that the methodology is sound...

Note: with the two main relations below, at the end, you can just as easily eliminate the polygamma functions with arguments 1/3 and 2/3, and thereby obtain precise formulae for arguments 1/6 and 5/6...

(Bandit)----------------------------------------------To start with, let's consider the following particular Clausen function of (arbitrary) odd order:[tex]\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)=\sum_{k=1}^{\infty}\frac{\cos (\pi k/3)}{k^{2m+1}}[/tex]We want to split this into six sums, where the first sum contains the first of every six terms, the second contains the second of every six terms, and so on. We also change summation index so our new series start at k=0, rather than k=1 above.[tex]\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)=\sum_{k=1}^{\infty}\frac{\cos (\pi k/3)}{k^{2m+1}}=[/tex][tex]\sum_{k=0}^{\infty}\frac{\cos\frac{\pi}{3}(6k+1)}{(6k+1)^{2m+1}}+
\sum_{k=0}^{\infty}\frac{\cos\frac{\pi}{3}(6k+2)}{(6k+2)^{2m+1}}+
\sum_{k=0}^{\infty}\frac{\cos\frac{\pi}{3}(6k+3)}{(6k+3)^{2m+1}}+[/tex]

[tex]\sum_{k=0}^{\infty}\frac{\cos\frac{\pi}{3}(6k+4)}{(6k+4)^{2m+1}}+
\sum_{k=0}^{\infty}\frac{\cos\frac{\pi}{3}(6k+5)}{(6k+5)^{2m+1}}+
\sum_{k=0}^{\infty}\frac{\cos\frac{\pi}{3}(6k+6)}{(6k+6)^{2m+1}}=[/tex]Simplify the trig term in each series:[tex]\cos \frac{\pi}{3}(6k+n)=\cos\left(2\pi k+\frac{\pi n}{3}\right)=[/tex]

[tex]\cos 2\pi k\cos\frac{\pi n}{3}-\sin 2\pi k\sin\frac{\pi n}{3}\equiv \cos\frac{\pi n}{3}[/tex]Our new sextet of series is thus

[tex]\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)=[/tex]

[tex]\cos\left(\frac{\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+1)^{2m+1}}+
\cos\left(\frac{2\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+2)^{2m+1}}+[/tex]

[tex]\cos\left(\pi\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+3)^{2m+1}}+
\cos\left(\frac{4\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+4)^{2m+1}}+[/tex]

[tex]\cos\left(\frac{5\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+5)^{2m+1}}+
\cos\left(2\pi\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+6)^{2m+1}}[/tex]Multiply both sides by [tex]6^{2m+1}\,[/tex], and then subtract the third and sixth series on the RHS from the Clausen term on the LHS (using [tex]\cos\pi = -1\,[/tex] and [tex]\cos 2\pi=1\,[/tex] ) to obtain:[tex]6^{2m+1}\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\sum_{k=0}^{\infty}\frac{1}{(k+1/2)^{2m+1}}-\sum_{k=0}^{\infty}\frac{1}{(k+1)^{2m+1}}=[/tex][tex]\cos\left(\frac{\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(k+1/6)^{2m+1}}+
\cos\left(\frac{2\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(k+1/3)^{2m+1}}+[/tex]

[tex]\cos\left(\frac{4\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(k+2/3)^{2m+1}}+\cos\left(\frac{5\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(k+5/6)^{2m+1}}[/tex]Express the cosine terms on the RHS in real/rational form to make the RHS[tex]\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{1}{(k+1/6)^{2m+1}}-
\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{1}{(k+1/3)^{2m+1}}[/tex]

[tex]-\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{1}{(k+2/3)^{2m+1}}+\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{1}{(k+5/6)^{2m+1}}[/tex]
Now use[tex]\psi_{n\ge 1}(x)=(-1)^{n+1}n!\sum_{k=0}^{\infty}\frac{1}{(k+x)^{n+1}}[/tex]

to re-write the RHS as:

[tex]\frac{1}{2}\left(\frac{(-1)^{2m}}{(2m)!}\right)\Bigg\{
\psi_{2m}\left( \frac{1}{6} \right)
-\psi_{2m}\left( \frac{1}{3} \right)
-\psi_{2m}\left( \frac{2}{3} \right)
+\psi_{2m}\left( \frac{5}{6} \right)
\Bigg\}=[/tex]

[tex]\frac{1}{2\,(2m)!}\, \Bigg\{
\psi_{2m}\left( \frac{1}{6} \right)
-\psi_{2m}\left( \frac{1}{3} \right)
-\psi_{2m}\left( \frac{2}{3} \right)
+\psi_{2m}\left( \frac{5}{6} \right)
\Bigg\}[/tex]Next, apply the same process to the two series on the LHS (with the Clausen term):[tex]6^{2m+1}\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\sum_{k=0}^{\infty}\frac{1}{(k+1/2)^{2m+1}}-\sum_{k=0}^{\infty}\frac{1}{(k+1)^{2m+1}}=[/tex]

[tex]6^{2m+1}\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\frac{1}{(2m)!}\Bigg\{ \psi_{2m}\left(\frac{1}{2}\right)-\psi_{2m}(1)\Bigg\}[/tex]Multiplying BOTH sides by [tex]2\, (2m)! \,[/tex] then gives the identity[tex]2 \, (2m)! \, 6^{2m+1} \text{Cl}_{2m+1} \left( \frac{\pi}{3}\right)+2 \psi_{2m}\left(\frac{1}{2}\right)-2 \psi_{2m}(1)=[/tex]

[tex] \psi_{2m} \left( \frac{1}{6} \right)
-\psi_{2m} \left( \frac{1}{3} \right)
-\psi_{2m} \left( \frac{2}{3} \right)
+\psi_{2m} \left( \frac{5}{6} \right) [/tex]----------------------------------------------------Next, repeat ALL of the above, but this time in terms of the Clasuen function with argument [tex]2\pi/3\,[/tex][tex]\text{Cl}_{2m+1}\left(\frac{2\pi}{3}\right)=\sum_{k=1}^{\infty}\frac{\cos (2\pi k/3)}{k^{2m+1}}=[/tex][tex]\cos\left(\frac{2\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+1)^{2m+1}}+
\cos\left(\frac{4\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+2)^{2m+1}}+[/tex]

[tex]\cos\left(2\pi\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+3)^{2m+1}}+
\cos\left(\frac{8\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+4)^{2m+1}}+[/tex]

[tex]\cos\left(\frac{10\pi}{3}\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+5)^{2m+1}}+
\cos\left(4\pi\right)\, \sum_{k=0}^{\infty}\frac{1}{(6k+6)^{2m+1}}=[/tex][tex]-\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{1}{(6k+1)^{2m+1}}
-\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{1}{(6k+2)^{2m+1}}+[/tex]

[tex]\sum_{k=0}^{\infty}\frac{1}{(6k+3)^{2m+1}}-
\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{1}{(6k+4)^{2m+1}}+[/tex]

[tex]-\frac{1}{2}\, \sum_{k=0}^{\infty}\frac{1}{(6k+5)^{2m+1}}+
\sum_{k=0}^{\infty}\frac{1}{(6k+6)^{2m+1}}[/tex]Continue exactly as before, and you get the second relation[tex]2\, (2m)! \, 6^{2m+1} \text{Cl}_{2m+1}\left(\frac{2\pi}{3}\right)-2 \psi_{2m}\left(\frac{1}{2}\right)-2 \psi_{2m}(1)=[/tex]

[tex]-\psi_{2m}\left( \frac{1}{6} \right)
-\psi_{2m}\left( \frac{1}{3} \right)
-\psi_{2m}\left( \frac{2}{3} \right)
-\psi_{2m}\left( \frac{5}{6} \right)[/tex]
----------------------------------------------------Relative to the arguments 1/3, 2/3, 1/6, and 5/6, the arguments 1 and 1/2 are pretty straightforward, so I'll simply state them now and prove them later.
[tex]\psi_{2m}(1)=-(2m)!\zeta(2m+1)[/tex]

[tex]\psi_{2m}\left(\frac{1}{2}\right)=-(2m)!\,(2^{2m+1}-1)\zeta(2m+1)[/tex]
Now, if you add the final forms or relation #1 and relation #2 you get:[tex]2\, (2m)! \,6^{2m+1}\left[\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\text{Cl}_{2m+1}\left(\frac{2\pi}{3}\right)\right]-4\psi_{2m}(1)=[/tex]

[tex]2\, (2m)! \,6^{2m+1}\left[\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\text{Cl}_{2m+1}\left(\frac{2\pi}{3}\right)\right]+4\,(2m)!\zeta(2m+1)=[/tex]

[tex]2\Bigg\{ \psi_{2m}\left( \frac{1}{3} \right)
+\psi_{2m}\left( \frac{2}{3} \right)\Bigg\}[/tex]Or

[tex](2m)! \,6^{2m+1}\left[\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\text{Cl}_{2m+1}\left(\frac{2\pi}{3}\right)\right]+2\,(2m)!\zeta(2m+1)=[/tex][tex]\psi_{2m}\left( \frac{1}{3} \right)
+\psi_{2m}\left( \frac{2}{3} \right)[/tex]On the other hand, the reflection formula for the polygamma function gives:[tex]\psi_{2m}(x)-\psi_{2m}(1-x)=\pi\frac{d^{2m}}{dx^{2m}}\cot\pi x[/tex][tex]\Rightarrow[/tex][tex]\psi_{2m}\left( \frac{1}{3} \right)
-\psi_{2m}\left( \frac{2}{3} \right)=\pi\frac{d^{2m}}{dx^{2m}}\cot\pi x\,\Biggr|_{x=1/3}[/tex]So\(\displaystyle \psi_{2m}\left( \frac{1}{3} \right)=\frac{(2m)! \,6^{2m+1}}{2}\left[\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\text{Cl}_{2m+1}\left(\frac{2\pi}{3}\right)\right]+\)

\(\displaystyle (2m)!\zeta(2m+1)+\pi\frac{d^{2m}}{dx^{2m}}\cot\pi x\,\Biggr|_{x=1/3}\)and\(\displaystyle \psi_{2m}\left( \frac{2}{3} \right)=\frac{(2m)! \,6^{2m+1}}{2}\left[\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\text{Cl}_{2m+1}\left(\frac{2\pi}{3}\right)\right]+\)

\(\displaystyle (2m)!\zeta(2m+1)-\pi\frac{d^{2m}}{dx^{2m}}\cot\pi x\,\Biggr|_{x=1/3}\)
 
  • #5
And one final point...Here's a cut 'n' paste of mine from t'other forum...Using this duplication formula you express those previous sums of two Clausen functions as a single Clausen function, and thereby simplify your expressions of (even ordered) polygamma functions at 1/3, 2/3, 1/6, and 5/6...(Party)

------------------------------------------Next, let's take the above duplication formula, replace [tex]\theta\,[/tex] with the variable x, and integrate both sides:[tex]\int_0^{ \varphi}\text{Cl}_{2m}(2x)\,dx=2^{2m-1}\left[\int_0^{ \varphi}\text{Cl}_{2m}(x)\,dx-\int_0^{ \varphi}\text{Cl}_{2m}(\pi-x)\,dx\right][/tex]The L.H.S. is equal to

[tex]\sum_{k=1}^{\infty}\frac{1}{k^{2m}}\,\int_0^{ \varphi}\sin 2kx\,dx=-\frac{1}{2}\,\sum_{k=1}^{\infty}\frac{1}{k^{2m+1}}\Big[\cos 2kx\Big]_0^{\varphi}=[/tex]

[tex]-\frac{1}{2}\,\sum_{k=1}^{\infty}\frac{\cos 2k\varphi}{k^{2m+1}}+\frac{1}{2}\,\sum_{k=1}^{\infty}\frac{1}{k^{2m+1}}=\frac{1}{2}\,[\zeta(2m+1)-\text{Cl}_{2m+1}(2\varphi)][/tex]Whereas the difference of the two integrals on the R.H.S. is

[tex]2^{2m-1}\,\sum_{k=1}^{\infty}\frac{1}{k^{2m}}\int_0^{\varphi}\left[\sin kx-\sin k(\pi-x)\right]\,dx=[/tex]

[tex]2^{2m-1}\,\sum_{k=1}^{\infty}\frac{1}{k^{2m+1}}\Big[-\cos kx+\cos k(\pi-x)\Big]_0^{\varphi}=[/tex]

[tex]2^{2m-1}\,\sum_{k=1}^{\infty}\frac{[\cos k(\pi-\varphi)-\cos k\varphi]}{k^{2m+1}}=2^{2m-1}[\text{Cl}_{2m+1}(\pi-\varphi)-\text{Cl}_{2m+1}(\varphi)][/tex]
We now have the duplication formula for a CL-type Clausen function of odd order:Result 2:[tex]\text{Cl}_{2m+1}(2\theta)=\zeta(2m+1)+2^{2m}\left[\text{Cl}_{2m+1}(\theta)-\text{Cl}_{2m+1}(\pi-\theta)\right][/tex]
 
  • #6
DreamWeaver

Correct me if I'm wrong, but basically what you did is generalize what I did for two particular cases.

But to complete the evaluation I need to either show that

$$ \displaystyle Cl_{3} \left( \frac{\pi}{3} \right) = \frac{\zeta(3)}{3}$$

or that

$$ -\psi_{2} \left(\frac{1}{6} \right) + \psi_{2} \left(\frac{1}{3} \right) + \psi_{2} \left(\frac{2}{3} \right) - \psi_{2} \left(\frac{5}{6} \right) = 312 \zeta(3) $$
 
Last edited:
  • #7
Random Variable said:
DreamWeaver

Correct me if I'm wrong, but basically what you did is generalize what I did for two particular cases.
Errrm... Yes and no. Sort of. My replies were a tad lengthy, so if you skim-read you might have missed the main result in reply #2:
DreamWeaver said:
\(\displaystyle \psi_{2m}\left( \frac{1}{3} \right)=\frac{(2m)! \,6^{2m+1}}{2}\left[\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\text{Cl}_{2m+1}\left(\frac{2\pi}{3}\right)\right]+\)

\(\displaystyle (2m)!\zeta(2m+1)+\pi\frac{d^{2m}}{dx^{2m}}\cot\pi x\,\Biggr|_{x=1/3}\)and\(\displaystyle \psi_{2m}\left( \frac{2}{3} \right)=\frac{(2m)! \,6^{2m+1}}{2}\left[\text{Cl}_{2m+1}\left(\frac{\pi}{3}\right)+\text{Cl}_{2m+1}\left(\frac{2\pi}{3}\right)\right]+\)

\(\displaystyle (2m)!\zeta(2m+1)-\pi\frac{d^{2m}}{dx^{2m}}\cot\pi x\,\Biggr|_{x=1/3}\)
As I say, sort of the same and also sort of different. The main point I was getting at is that, by using the methods above, you can express any (single) Clausen function of argument \(\displaystyle \pi/3\,\) or \(\displaystyle 2\pi/3\,\) in terms of any single polygamma function, of associated order, with argument 1/3, 2/3, 1/6, or 5/6. The reverse is also true.

I was probably wandering a bit off-topic... :eek:
 
  • #8
Using the duplication formula for $\psi_{2}(x)$,

$$ -\psi_{2} \left(\frac{1}{6} \right) + \psi_{2} \left(\frac{1}{3} \right) + \psi_{2} \left(\frac{2}{3} \right) - \psi_{2} \left(\frac{5}{6} \right) = -8 \psi_{2} \left(\frac{1}{3} \right) +\psi_{2} \left(\frac{2}{3} \right) + \psi_{2} \left(\frac{1}{3} \right)$$

$$+\psi_{2} \left(\frac{2}{3} \right) - 8 \psi_{2} \left(\frac{2}{3} \right) + \psi_{2} \left(\frac{1}{3} \right) = -6 \psi_{2} \left(\frac{1}{3} \right) - 6 \psi_{2} \left(\frac{2}{3} \right)$$

Then using the more general multiplication formula,

$$ \psi_{2} \left(\frac{1}{3} \right) + \psi_{2} \left( \frac{2}{3} \right) + \psi_{2}(1) = 27 \psi_{2} (1) $$

$$ \implies -6 \psi_{2} \left(\frac{1}{3} \right) - 6 \psi_{2} \left(\frac{2}{3} \right) = -156 \psi_{2} (1) = 312 \zeta(3) $$
 
  • #9
Nicely done, Sir! (Yes)
 

Related to A sum involving the central binomial coefficients

1. What is a sum involving the central binomial coefficients?

A sum involving the central binomial coefficients is a mathematical expression that sums up the values of the central binomial coefficients, which are the coefficients in the expansion of the binomial (1+x)^n where n is a positive integer. The sum can be written in various forms, such as using factorials or using combinations.

2. What is the formula for the sum involving the central binomial coefficients?

The formula for the sum involving the central binomial coefficients is (1+1)^n, which simplifies to 2^n. This can also be written as nC0 + nC1 + nC2 + ... + nCn, where nCk represents the central binomial coefficient for the kth term.

3. What is the significance of the central binomial coefficients in this sum?

The central binomial coefficients play a crucial role in the sum as they represent the coefficients in the expansion of the binomial (1+x)^n. This means that they determine the values of each term in the sum and ultimately determine the overall result of the sum.

4. How is the sum involving the central binomial coefficients used in real-world applications?

The sum involving the central binomial coefficients has various applications in fields such as probability, statistics, and engineering. It is used to calculate probabilities, approximate values of certain equations, and determine combinations of elements in a set.

5. Are there any other sums involving binomial coefficients?

Yes, there are various other sums involving binomial coefficients, such as the Vandermonde's identity and the Chu-Vandermonde identity. These sums have different formulas and are used in different contexts, but they also involve the central binomial coefficients in their calculations.

Back
Top