- #1
polygamma
- 229
- 0
Wolfram MathWorld states that $$ \sum_{n=1}^{\infty} \frac{1}{n^{3} \binom{2n}{n}} = \frac{ \pi \sqrt{3}}{18} \Big[ \psi_{1} \left(\frac{1}{3} \right) - \psi_{1} \left(\frac{2}{3} \right) \Big]- \frac{4}{3} \zeta(3) $$
where $\psi_{1}(x)$ is the trigamma function. But I can't get my answer in that form.Using the Taylor expansion $ \displaystyle \arcsin^{2}(x) = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^{2} \binom{2n}{n}} (2x)^{2n}$,
$$ \sum_{n=1}^{\infty} \frac{1}{n^{3} \binom{2n}{n}} = 4 \int_{0}^{\frac{1}{2}} \frac{\arcsin^{2}(x)}{x} \ dx $$
Then integrating by parts
$$ 4 \int_{0}^{\frac{1}{2}} \frac{\arcsin^{2}(x)}{x} \ dx = \frac{\pi^{2}}{9} \ln \left(\frac{1}{2} \right) - 8 \int_{0}^{\frac{1}{2}} \frac{\arcsin (x) \ln (x)}{\sqrt{1-x^{2}}} \ dx$$
$$ = - \frac{\pi^{2}}{9} \ln 2 - 8 \int_{0}^{\frac{\pi}{6}} u \ln (\sin u ) \ du = - 8 \ln 2 \int_{0}^{\frac{\pi}{6}} u \ du - 8\int_{0}^{\frac{\pi}{6}} u \ln (\sin u ) \ du$$
$$ = - 8 \int_{0}^{\frac{\pi}{6}} u \ln ( 2 \sin u ) \ du = -8 \ \text{Re} \int_{0}^{\frac{\pi}{6}} u \ln (1-e^{2iu}) \ du = 8 \ \text{Re} \int_{0}^{\frac{\pi}{6}} u \sum_{n=1}^{\infty} \frac{e^{2in u}}{n} \ du $$
$$ = 8 \ \sum_{n=1}^{\infty} \frac{1}{n} \int_{0}^{\frac{\pi}{6}} u \cos (2nu) \ du = \frac{2 \pi}{3} \sum_{n=1}^{\infty} \frac{\sin (\frac{n \pi}{3})}{n^{2}} + 2 \sum_{n=1}^{\infty} \frac{\cos (\frac{n \pi}{3})}{n^{3}} - 2 \zeta(3) $$
$$ = \frac{2 \pi}{3} \Bigg( \frac{\sqrt{3}}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+1)^{2}} + \frac{\sqrt{3}}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+2)^{2}} - \frac{\sqrt{3}}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+4)^{2}} - \frac{\sqrt{3}}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+5)^{2}} \Bigg)$$
$$ + \ 2 \Bigg( \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+1)^{3}} - \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+2)^{3}} - \sum_{n=0}^{\infty} \frac{1}{(6n+3)^{3}} - \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+4)^{3}} $$
$$ + \ \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+5)^{3}} + \sum_{n=1}^{\infty} \frac{1}{(6n)^{3}} \Bigg) - 2 \zeta(3)$$
$$ = \frac{\pi \sqrt{3}}{108} \Bigg( \psi_{1} \left(\frac{1}{6} \right) + \psi_{1} \left(\frac{1}{3} \right) - \psi_{1} \left(\frac{2}{3} \right) - \psi_{1}\left(\frac{5}{6} \right) \Bigg) + \frac{1}{432} \Bigg( - \psi_{2} \left(\frac{1}{6} \right) + \psi_{2} \left(\frac{1}{3} \right) -28 \zeta(3)$$
$$ + \psi_{2} \left(\frac{2}{3} \right) - \psi_{2} \left(\frac{5}{6} \right) + 4 \zeta(3)\Bigg) - 2 \zeta (3) $$EDIT:
Using the duplication formula for the trigamma function,
$$ \psi_{1} \left(\frac{1}{6} \right) + \psi_{1} \left(\frac{1}{3} \right) - \psi_{1} \left(\frac{2}{3} \right) - \psi_{1}\left(\frac{5}{6} \right) = 4 \psi_{1} \left(\frac{1}{3} \right) -\psi_{1} \left(\frac{2}{3} \right) + \psi_{1} \left(\frac{1}{3} \right) -\psi_{1} \left(\frac{2}{3} \right) - 4 \psi_{1} \left(\frac{2}{3} \right) + \psi_{1} \left(\frac{1}{3} \right)$$
$$ = 6 \psi_{1} \left(\frac{1}{3} \right) - 6 \psi_{1} \left(\frac{2}{3} \right) $$Then
$$ \sum_{n=1}^{\infty} \frac{1}{n^{3} \binom{2n}{n}} = \frac{\sqrt{3} \pi}{18} \Bigg( \psi_{1} \left(\frac{1}{3} \right) - \psi_{1} \left(\frac{2}{3} \right) \Bigg) +
\frac{1}{432} \Bigg( - \psi_{2} \left(\frac{1}{6} \right) + \psi_{2} \left(\frac{1}{3} \right) + \psi_{2} \left(\frac{2}{3} \right) - \psi_{2} \left(\frac{5}{6} \right) -24 \zeta(3)\Bigg) $$
$$ - 2 \zeta (3) $$So what I need to show is that
$$ -\psi_{2} \left(\frac{1}{6} \right) + \psi_{2} \left(\frac{1}{3} \right) + \psi_{2} \left(\frac{2}{3} \right) - \psi_{2} \left(\frac{5}{6} \right) = 312 \zeta(3) $$
where $\psi_{1}(x)$ is the trigamma function. But I can't get my answer in that form.Using the Taylor expansion $ \displaystyle \arcsin^{2}(x) = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^{2} \binom{2n}{n}} (2x)^{2n}$,
$$ \sum_{n=1}^{\infty} \frac{1}{n^{3} \binom{2n}{n}} = 4 \int_{0}^{\frac{1}{2}} \frac{\arcsin^{2}(x)}{x} \ dx $$
Then integrating by parts
$$ 4 \int_{0}^{\frac{1}{2}} \frac{\arcsin^{2}(x)}{x} \ dx = \frac{\pi^{2}}{9} \ln \left(\frac{1}{2} \right) - 8 \int_{0}^{\frac{1}{2}} \frac{\arcsin (x) \ln (x)}{\sqrt{1-x^{2}}} \ dx$$
$$ = - \frac{\pi^{2}}{9} \ln 2 - 8 \int_{0}^{\frac{\pi}{6}} u \ln (\sin u ) \ du = - 8 \ln 2 \int_{0}^{\frac{\pi}{6}} u \ du - 8\int_{0}^{\frac{\pi}{6}} u \ln (\sin u ) \ du$$
$$ = - 8 \int_{0}^{\frac{\pi}{6}} u \ln ( 2 \sin u ) \ du = -8 \ \text{Re} \int_{0}^{\frac{\pi}{6}} u \ln (1-e^{2iu}) \ du = 8 \ \text{Re} \int_{0}^{\frac{\pi}{6}} u \sum_{n=1}^{\infty} \frac{e^{2in u}}{n} \ du $$
$$ = 8 \ \sum_{n=1}^{\infty} \frac{1}{n} \int_{0}^{\frac{\pi}{6}} u \cos (2nu) \ du = \frac{2 \pi}{3} \sum_{n=1}^{\infty} \frac{\sin (\frac{n \pi}{3})}{n^{2}} + 2 \sum_{n=1}^{\infty} \frac{\cos (\frac{n \pi}{3})}{n^{3}} - 2 \zeta(3) $$
$$ = \frac{2 \pi}{3} \Bigg( \frac{\sqrt{3}}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+1)^{2}} + \frac{\sqrt{3}}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+2)^{2}} - \frac{\sqrt{3}}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+4)^{2}} - \frac{\sqrt{3}}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+5)^{2}} \Bigg)$$
$$ + \ 2 \Bigg( \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+1)^{3}} - \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+2)^{3}} - \sum_{n=0}^{\infty} \frac{1}{(6n+3)^{3}} - \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+4)^{3}} $$
$$ + \ \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{(6n+5)^{3}} + \sum_{n=1}^{\infty} \frac{1}{(6n)^{3}} \Bigg) - 2 \zeta(3)$$
$$ = \frac{\pi \sqrt{3}}{108} \Bigg( \psi_{1} \left(\frac{1}{6} \right) + \psi_{1} \left(\frac{1}{3} \right) - \psi_{1} \left(\frac{2}{3} \right) - \psi_{1}\left(\frac{5}{6} \right) \Bigg) + \frac{1}{432} \Bigg( - \psi_{2} \left(\frac{1}{6} \right) + \psi_{2} \left(\frac{1}{3} \right) -28 \zeta(3)$$
$$ + \psi_{2} \left(\frac{2}{3} \right) - \psi_{2} \left(\frac{5}{6} \right) + 4 \zeta(3)\Bigg) - 2 \zeta (3) $$EDIT:
Using the duplication formula for the trigamma function,
$$ \psi_{1} \left(\frac{1}{6} \right) + \psi_{1} \left(\frac{1}{3} \right) - \psi_{1} \left(\frac{2}{3} \right) - \psi_{1}\left(\frac{5}{6} \right) = 4 \psi_{1} \left(\frac{1}{3} \right) -\psi_{1} \left(\frac{2}{3} \right) + \psi_{1} \left(\frac{1}{3} \right) -\psi_{1} \left(\frac{2}{3} \right) - 4 \psi_{1} \left(\frac{2}{3} \right) + \psi_{1} \left(\frac{1}{3} \right)$$
$$ = 6 \psi_{1} \left(\frac{1}{3} \right) - 6 \psi_{1} \left(\frac{2}{3} \right) $$Then
$$ \sum_{n=1}^{\infty} \frac{1}{n^{3} \binom{2n}{n}} = \frac{\sqrt{3} \pi}{18} \Bigg( \psi_{1} \left(\frac{1}{3} \right) - \psi_{1} \left(\frac{2}{3} \right) \Bigg) +
\frac{1}{432} \Bigg( - \psi_{2} \left(\frac{1}{6} \right) + \psi_{2} \left(\frac{1}{3} \right) + \psi_{2} \left(\frac{2}{3} \right) - \psi_{2} \left(\frac{5}{6} \right) -24 \zeta(3)\Bigg) $$
$$ - 2 \zeta (3) $$So what I need to show is that
$$ -\psi_{2} \left(\frac{1}{6} \right) + \psi_{2} \left(\frac{1}{3} \right) + \psi_{2} \left(\frac{2}{3} \right) - \psi_{2} \left(\frac{5}{6} \right) = 312 \zeta(3) $$
Last edited: