- #1
volleygirl292
- 16
- 0
Homework Statement
A thin vertical rod of mass m and length d slides on a frictionless horizontal surface with velocity Vo to the right. It his and sticks to a small lump of putty and rotates about the putty at point O.
(a) Find the angular momentum of the rod about O just before and just after it sticks to the putty.
(b) Find the angular speed, w, of the rod just after it sticks to the putty.
(c) find the speed of the free end of the rod just before and just after the rod sticks to the putty. Does the result surprise you?
(d) What fraction of the initial kinetic energy is lost when the rod sticks to the putty?
Homework Equations
L=Iw=rxmv
v=p/m
KEi-KEf/KEi
I=m(a^2)/3 for normal to rod at one end
I=m(a^2)/12 for normal to rod at its center
The Attempt at a Solution
For part (a) I said L=Iw=rxmv=0 since r=0 and just after it sticks L=rxmv=mvd. I am not sure if the second part of this is right.
For part (b) I said Iw=mvd so w=mvd/I=mvd/((md^2)/3)=3v/d
I am confused on part c. I know that initially all the points on the rod move with a velocity Vo. After the rod sticks, the motion will be rotation about the axis through the putty; each part of the rod will have a different linear speed. This is speed, not velocity, so I do not need the direction of motion, but just the scalar speed. I just am not sure how to find this value. I assume I need to use energy conservation
then for (d) KEi-KEf/KEi so (1/2)Irw^2 -(1/2)(Iw^2)/(1/2Irw^2) where Ir is moment of inertia for the rod and I is moment of the rod stuck to putty. I think I=((md^2)/3) +md^2 and Ir=((md^2)/3) since looking at normal to rod at one end