- #1
Saitama
- 4,243
- 93
I encountered this when I tried to evaluate the following integral with help of complex numbers.
$$\int_0^{\infty} \frac{dx}{x^2+1}$$
The answer is obviously $\pi/2$ as the integrand is derivative of $\arctan(x)$.
Now, I tried it it using partial fraction decomposition:
$$\int_0^{\infty} \frac{dx}{x^2+1}=\frac{1}{2i}\left(\int_0^{\infty} \frac{dx}{x-i}-\int_0^{\infty} \frac{dx}{x+i}\right)$$
$$=\frac{1}{2i}\left(\ln\left(\frac{x-i}{x+i}\right)\right|_0^{\infty}=\frac{-1}{2i}\ln(-1)$$
If I write $-1=e^{-i\pi}$, I get the correct answer but how do I justify writing $-1=e^{-i\pi}$? I mean why not $e^{-i3\pi}$ or $e^{-i5\pi}$?
Any help is appreciated. Thanks!
$$\int_0^{\infty} \frac{dx}{x^2+1}$$
The answer is obviously $\pi/2$ as the integrand is derivative of $\arctan(x)$.
Now, I tried it it using partial fraction decomposition:
$$\int_0^{\infty} \frac{dx}{x^2+1}=\frac{1}{2i}\left(\int_0^{\infty} \frac{dx}{x-i}-\int_0^{\infty} \frac{dx}{x+i}\right)$$
$$=\frac{1}{2i}\left(\ln\left(\frac{x-i}{x+i}\right)\right|_0^{\infty}=\frac{-1}{2i}\ln(-1)$$
If I write $-1=e^{-i\pi}$, I get the correct answer but how do I justify writing $-1=e^{-i\pi}$? I mean why not $e^{-i3\pi}$ or $e^{-i5\pi}$?
Any help is appreciated. Thanks!