What equations relate to the symmetry of equipotential lines?

AI Thread Summary
The discussion revolves around understanding the symmetry of equipotential lines in the context of an experiment involving electric charges. The original poster is confused about how to complete the equipotential line diagram, particularly regarding the symmetry related to the x-axis and y-axis. Participants emphasize the need for clarity on the initial conditions of the diagram and the nature of the charges involved. They suggest that the equipotential lines can be derived from the electric field generated by the charges and inquire about the relevant equations for calculating the electric field and potential. The conversation highlights the importance of visualizing the setup accurately to determine the correct symmetry and equipotential lines.
Mimyo
2
1
Homework Statement
complete this equipotential line.
Relevant Equations
.
KakaoTalk_20200923_162021373_01.jpg
This is the second quadrant of the equipotential line. I think this would be symmetry but I'm not sure what to do.
Is this going to be the symmetry of both the x-axis and y-axis and the symmetry of the y-axis is ( - )?

Sorry for the bad English! feel free to leave comment if you can't understand the question, thank you!
 
Last edited by a moderator:
Physics news on Phys.org
Mimyo said:
Homework Statement:: complete this equipotential line.
Relevant Equations:: .

View attachment 270056This is the second quadrant of the equipotential line. I think this would be symmetry but I'm not sure what to do.
Is this going to be the symmetry of both the x-axis and y-axis and the symmetry of the y-axis is ( - )?

Sorry for the bad English! feel free to leave comment if you can't understand the question, thank you!
Welcome to PhysicsForums. :smile:

The problem statement and the graph/drawing are very confusing. What is the full problem statement? What is at the origin? Charge? Current? A point of something or a distribution of line charge or something?

And what did the blank diagram look like before you started trying to draw lines on it? Were the long straight lines at angles there before, or did you draw those with a ruler? Were only the dotted lines in arcs on the drawing before, and all of the rest of the lines are yours?
 
  • Like
Likes Mimyo
berkeman said:
Welcome to PhysicsForums. :smile:

The problem statement and the graph/drawing are very confusing. What is the full problem statement? What is at the origin? Charge? Current? A point of something or a distribution of line charge or something?

And what did the blank diagram look like before you started trying to draw lines on it? Were the long straight lines at angles there before, or did you draw those with a ruler? Were only the dotted lines in arcs on the drawing before, and all of the rest of the lines are yours?
Professor just gave me the picture, since we can't do the experiment due to COVID 19. So this is the result of the "equipotential line experiment". The picture I posted is the 1/4 of the result and the original one (That I have to complete) is below. Line of electric force flows from + to -, and you can see the ( + ) in the picture.

KakaoTalk_20200923_161951630.jpg


So, I haven't drawn any lines. According to his advice, I have to symmetry to x or y-axis and connected dots going to be the equipotential line. After that, I have to symmetry the equipotential line again.

Thanks for helping me T_T
 
Okay, thanks. That helps a lot. So there are +/- charges on the x-axis at +/- 28 (whatever units), right?

Probably the Equipotential lines look a lot like the diagram below. But what equation would you use to calculate the E-field at any point as the sum of the contributions from each of the two charges? And how does that relate to the equation for the potential generated from that vector E-field?

1601156719073.png
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up will act downwards and maximum static friction will act downwards Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top