- #1
IamNobody
- 1
- 0
Does it not raise question to be able to build two parameters with the same dimension and order of magnitude of two fundamental constants from five parameters (other fundamental constants and measured properties)?
$$\sqrt{10\frac{\left(\varepsilon_0 e^{-2}\right)^3\left(k_B T\right)^4}{\rho_c}} \sim 3\times 10^8~m.s^{-1}$$
$$21.7\frac{\sqrt{\rho_c}}{\left(\varepsilon_0 e^{-2}\right)^{5/2}\left(k_B T\right)^2} \sim 6.6\times 10^{-34}~kg.m^2.s^{-1}$$
with
Vacuum permittivity: ##\varepsilon_0\sim 8.854\times 10^{-12}~m^{-3}.kg^{-1}.s^4.A^2##
Elementary charge: ##e\sim 1.602\times 10^{-19}~A.s##
Boltzmann constant: ##k_B\sim 1.381\times 10^{-23}~kg.m^2.s^{-2}.K^{-1}##
Cosmic Microwave Background (CMB) temperature: ##T\sim 2.73~K##
Critical density: ##\rho_c=\frac{3H^2}{8\pi G}\sim 9.2\times 10^{-27}~kg.m^{-3}##
where ##G\sim 6.674 \times 10^{-11}~m^3.kg^{-1}.s^{-2}## is the gravitational constant and ##H\sim 70~km.s^{-1}.Mpc^{-1}## is the Hubble constant (actually between ##65## and ##75~km.s^{-1}.Mpc^{-1}## according to the measurements).
Of course, the speed of light is ##c\sim 3\times 10^8~m.s^{-1}## and the Planck constant is ##h\sim 6.626\times 10^{-34}~kg.m^2.s^{-1}##.
Besides, one can see both relations as two dimensionless numbers approximately equal to ##\sqrt{10}## and ##21.7## built from assumed independent parameters.
$$\sqrt{10\frac{\left(\varepsilon_0 e^{-2}\right)^3\left(k_B T\right)^4}{\rho_c}} \sim 3\times 10^8~m.s^{-1}$$
$$21.7\frac{\sqrt{\rho_c}}{\left(\varepsilon_0 e^{-2}\right)^{5/2}\left(k_B T\right)^2} \sim 6.6\times 10^{-34}~kg.m^2.s^{-1}$$
with
Vacuum permittivity: ##\varepsilon_0\sim 8.854\times 10^{-12}~m^{-3}.kg^{-1}.s^4.A^2##
Elementary charge: ##e\sim 1.602\times 10^{-19}~A.s##
Boltzmann constant: ##k_B\sim 1.381\times 10^{-23}~kg.m^2.s^{-2}.K^{-1}##
Cosmic Microwave Background (CMB) temperature: ##T\sim 2.73~K##
Critical density: ##\rho_c=\frac{3H^2}{8\pi G}\sim 9.2\times 10^{-27}~kg.m^{-3}##
where ##G\sim 6.674 \times 10^{-11}~m^3.kg^{-1}.s^{-2}## is the gravitational constant and ##H\sim 70~km.s^{-1}.Mpc^{-1}## is the Hubble constant (actually between ##65## and ##75~km.s^{-1}.Mpc^{-1}## according to the measurements).
Of course, the speed of light is ##c\sim 3\times 10^8~m.s^{-1}## and the Planck constant is ##h\sim 6.626\times 10^{-34}~kg.m^2.s^{-1}##.
Besides, one can see both relations as two dimensionless numbers approximately equal to ##\sqrt{10}## and ##21.7## built from assumed independent parameters.