- #1
HDB1
- 77
- 7
Homework Statement: About semidirect product of Lie algebra
Relevant Equations: ##\mathfrak{s l}_2=## ##\mathbb{K} F \oplus \mathbb{K} H \oplus \mathbb{K} E##
Hi,
Please, I have a question about the module of special lie algebra:
Let ##\mathbb{K}## be a field. Let the Lie algebra ##\mathfrak{s l}_2=\mathbb{K} F \oplus \mathbb{K} H \oplus \mathbb{K} E##
is a simple Lie algebra where the Lie bracket is given by the rule: ##[H, E]=2 E,[H, F]=-2 F## and ##[E, F]=H##. Let ##V_2=\mathbb{K} X \oplus \mathbb{K} Y## be the 2-dimensional simple ##\mathfrak{s l}_2##-module with basis ##X## and ##Y##.
Let ##\mathfrak{a}:=\mathfrak{s l}_2 \ltimes V_2## be the semi-direct product of Lie algebras .
The Lie algebra ##\mathfrak{a}## admits the basis ##\{H, E, F, X, Y\}## and the Lie bracket is defined as follows
$$
\begin{array}{lllll}
{[H, E]=2 E,} & {[H, F]=-2 F,} & {[E, F]=H,} & {[E, X]=0,} & {[E, Y]=X,} \\
{[F, X]=Y,} & {[F, Y]=0,} & {[H, X]=X,} & {[H, Y]=-Y,} & {[X, Y]=0 .}
\end{array}
$$
Let ##A=U(\mathfrak{a})## be the enveloping algebra of the Lie algebra ##\mathfrak{a}##.
Please, I know the basis of ##\mathfrak{s l}_2=##, which is ( as above):
$$
E=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad F=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad H=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right].
$$
A computation in ##M_2(\mathbb{K})## yields the following set of relations:
$$
[H, E]=2 E, \quad[H, F]=-2 F, \quad[E, F]=H.
$$I need to know please,
1- what is the matrix of X and Y,
2- How we compute the bracket between the elements of ##\mathfrak{s l}_2=## and ##V_2##,
Where: $$[x, y]=x y-y x$$.Thank you so much in advance,
Relevant Equations: ##\mathfrak{s l}_2=## ##\mathbb{K} F \oplus \mathbb{K} H \oplus \mathbb{K} E##
Hi,
Please, I have a question about the module of special lie algebra:
Let ##\mathbb{K}## be a field. Let the Lie algebra ##\mathfrak{s l}_2=\mathbb{K} F \oplus \mathbb{K} H \oplus \mathbb{K} E##
is a simple Lie algebra where the Lie bracket is given by the rule: ##[H, E]=2 E,[H, F]=-2 F## and ##[E, F]=H##. Let ##V_2=\mathbb{K} X \oplus \mathbb{K} Y## be the 2-dimensional simple ##\mathfrak{s l}_2##-module with basis ##X## and ##Y##.
Let ##\mathfrak{a}:=\mathfrak{s l}_2 \ltimes V_2## be the semi-direct product of Lie algebras .
The Lie algebra ##\mathfrak{a}## admits the basis ##\{H, E, F, X, Y\}## and the Lie bracket is defined as follows
$$
\begin{array}{lllll}
{[H, E]=2 E,} & {[H, F]=-2 F,} & {[E, F]=H,} & {[E, X]=0,} & {[E, Y]=X,} \\
{[F, X]=Y,} & {[F, Y]=0,} & {[H, X]=X,} & {[H, Y]=-Y,} & {[X, Y]=0 .}
\end{array}
$$
Let ##A=U(\mathfrak{a})## be the enveloping algebra of the Lie algebra ##\mathfrak{a}##.
Please, I know the basis of ##\mathfrak{s l}_2=##, which is ( as above):
$$
E=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad F=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad H=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right].
$$
A computation in ##M_2(\mathbb{K})## yields the following set of relations:
$$
[H, E]=2 E, \quad[H, F]=-2 F, \quad[E, F]=H.
$$I need to know please,
1- what is the matrix of X and Y,
2- How we compute the bracket between the elements of ##\mathfrak{s l}_2=## and ##V_2##,
Where: $$[x, y]=x y-y x$$.Thank you so much in advance,
Last edited by a moderator: