- #1
WhyIsItSo
- 185
- 1
Water – Boiling and Freezing
What started as a question has become my own answer. While waiting the 15 minutes or so for this site to send me my new authorization, I found my answers to…
Many years ago I watched a science show hosted by a professor called Julius Sumner-Miller, who would demonstrate some experiment then ask his standard question, “Why is it so?”. One day I watched him freeze boiling water. Fascinating stuff.
For some reason I recently started wondering what “boiling” means in scientific terms. Also, the experiment works on the premise of altering the boiling point of water through manipulating atmospheric pressure, but I wondered if the freezing point is also affected this way. Here is what I found out.
Boiling
In an article concerned with mildly superheating water (context is the dangers with heating water in a microwave oven) (Wolfe, 2005), Wolfe talks about a process called nucleation; essentially the event of a bubble of steam forming. It requires a certain amount of energy to overcome the pressure of the surrounding water to allow a bubble to form, and this is why increasing pressure makes it harder for nucleation to occur. So when we talk about the “boiling point” of water for a given pressure, nucleation is the process we are discussing.
Freezing and Pressure
What about the freezing point of water; is it affected by pressure? Turns out it is, as I suppose common sense would dictate, but then remember we are talking about a substance that breaks a few “rules”, such as expanding as its temperature continues to fall below freezing. I found a formula stated as:
dTm/dP = Tm*dV/dHm (Calder)
Calder supplies the numbers for water, and concludes this formula shows that to lower the freezing point of water by 1 degree C, one would have to apply 135 atmospheres. So, for most day-to-day applications, one could assume that variations in atmospheric pressure are not making significant changes to the freezing point of water.
Why Then Did the Experiment Work
The above were just the knots I simply had to undo for myself. If you are curious, the following describes the experiment.
The original experiment I saw used a shallow dish of water placed inside a cylinder of glass, domed on top and sitting on a steel plate with a vacuum pump attached in the center. The experiment began with the water at room temperature (say 35 C) and the pressure at ambient (say 1 Atmosphere). When the vacuum pump was turned on, the pressure inside the container fell rapidly causing two things to happen; the boiling point of the water soon fell below 35 C (and continued to fall), and the temperature inside the container fell abruptly (result of lowering pressure), thus began cooling the water. The experiment was a race between the falling boiling point, and the falling temperature of the water. The observation I made was that the water was boiling (nucleating) for a few seconds, then abruptly formed into ice; and I mean in the blink of an eye. The why is simply that by evacuating the container, the boiling point was reduced below 0 C very quickly. It took a little longer for the water to cool to 0 C, so we watched it “boil” for a short time, then it hit 0 C and bam, just like that it was frozen.
I should probably note that the freezing point was slightly increased, so the actual temperature at freezing may have been closer to 1 C than 0 C. Rather insignificant compared to the relatively large change pressure has on boiling point.
References
Calder, V. (n.d.). Freezing Water. Retrieved August 16, 2006, from Argonne National Labarotory Web site: http://www.Newton.dep.anl.gov/webpages/askasci/chem00/chem00543.htm
Wolfe, J. (2005). Superheating and microwave ovens. Retrieved August 16, 2006, from University of New South Wales Web site: http://www.phys.unsw.edu.au/~jw/superheating.html
What started as a question has become my own answer. While waiting the 15 minutes or so for this site to send me my new authorization, I found my answers to…
Many years ago I watched a science show hosted by a professor called Julius Sumner-Miller, who would demonstrate some experiment then ask his standard question, “Why is it so?”. One day I watched him freeze boiling water. Fascinating stuff.
For some reason I recently started wondering what “boiling” means in scientific terms. Also, the experiment works on the premise of altering the boiling point of water through manipulating atmospheric pressure, but I wondered if the freezing point is also affected this way. Here is what I found out.
Boiling
In an article concerned with mildly superheating water (context is the dangers with heating water in a microwave oven) (Wolfe, 2005), Wolfe talks about a process called nucleation; essentially the event of a bubble of steam forming. It requires a certain amount of energy to overcome the pressure of the surrounding water to allow a bubble to form, and this is why increasing pressure makes it harder for nucleation to occur. So when we talk about the “boiling point” of water for a given pressure, nucleation is the process we are discussing.
Freezing and Pressure
What about the freezing point of water; is it affected by pressure? Turns out it is, as I suppose common sense would dictate, but then remember we are talking about a substance that breaks a few “rules”, such as expanding as its temperature continues to fall below freezing. I found a formula stated as:
dTm/dP = Tm*dV/dHm (Calder)
Calder supplies the numbers for water, and concludes this formula shows that to lower the freezing point of water by 1 degree C, one would have to apply 135 atmospheres. So, for most day-to-day applications, one could assume that variations in atmospheric pressure are not making significant changes to the freezing point of water.
Why Then Did the Experiment Work
The above were just the knots I simply had to undo for myself. If you are curious, the following describes the experiment.
The original experiment I saw used a shallow dish of water placed inside a cylinder of glass, domed on top and sitting on a steel plate with a vacuum pump attached in the center. The experiment began with the water at room temperature (say 35 C) and the pressure at ambient (say 1 Atmosphere). When the vacuum pump was turned on, the pressure inside the container fell rapidly causing two things to happen; the boiling point of the water soon fell below 35 C (and continued to fall), and the temperature inside the container fell abruptly (result of lowering pressure), thus began cooling the water. The experiment was a race between the falling boiling point, and the falling temperature of the water. The observation I made was that the water was boiling (nucleating) for a few seconds, then abruptly formed into ice; and I mean in the blink of an eye. The why is simply that by evacuating the container, the boiling point was reduced below 0 C very quickly. It took a little longer for the water to cool to 0 C, so we watched it “boil” for a short time, then it hit 0 C and bam, just like that it was frozen.
I should probably note that the freezing point was slightly increased, so the actual temperature at freezing may have been closer to 1 C than 0 C. Rather insignificant compared to the relatively large change pressure has on boiling point.
References
Calder, V. (n.d.). Freezing Water. Retrieved August 16, 2006, from Argonne National Labarotory Web site: http://www.Newton.dep.anl.gov/webpages/askasci/chem00/chem00543.htm
Wolfe, J. (2005). Superheating and microwave ovens. Retrieved August 16, 2006, from University of New South Wales Web site: http://www.phys.unsw.edu.au/~jw/superheating.html