I About writing a unitary matrix in another way

aalma
Messages
46
Reaction score
1
It is easy to see that a matrix of the given form is actually an unitary matrix i,e, satisfying AA^*=I with determinant 1. But, how to see that an unitary matrix can be represented in the given way?
20230322_224305.jpg
 
Last edited by a moderator:
Physics news on Phys.org
Take the most general matrix,
$$
A =
\begin{bmatrix}
a + bi & c + di \\
e+ fi & g+hi
\end{bmatrix}
$$
and show that imposing ##AA^\dagger = I## requires ##e = -c##, ##f=d##, and so on.
 
  • Like
Likes aalma and topsquark
Yes, thanks. Tried to do this however got somehow long equations with these eight real numbers. guessing how it should be solved!
I also wrote the condition that the det of this matrix=1.
 
Can't you just find the inverse of the matrix using the standard formula, and then you do the hermitian of the matrix and thus figure out what the relationsships of a, b, c, ... must be?

##A^\dagger = A^{-1}##
 
Last edited:
  • Like
Likes aalma and DrClaude
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top