MHB Absolute Value with two expressions.

AI Thread Summary
To solve the absolute value problem, the expression is defined as a piecewise function with three segments. The only solution found so far is at x=1, but there should be two valid roots within the specified domains. To sketch the area between -1 and 2, calculate the endpoints of the middle segment, which are f(-1) = -2 and f(2) = 1. Plot the points (-1, -2) and (2, 1), then connect them with a line segment to complete the graph. Understanding the roots and their respective domains is crucial for accurate representation.
stuart4512
Messages
3
Reaction score
0
How do I do this? I have tried a few methods and end up getting x values that don't work when placed back into the equation.

View attachment 3670
 

Attachments

  • Untitled.png
    Untitled.png
    3.4 KB · Views: 88
Mathematics news on Phys.org
I would write the expression as a piecewise function:

$$f(x)=\begin{cases}-3x-5, & x<-1 \\[3pt] x-1, & -1\le x\le2 \\[3pt] 3x-5, & 2<x \\ \end{cases}$$

Can you proceed?

edit: I have moved this thread here from our Linear Algebra subforum, as this is a better fit. :D
 
I got the only solution to be at x=1.
How do I sketch the area between -1 and 2?
 
stuart4512 said:
I got the only solution to be at x=1.
How do I sketch the area between -1 and 2?

You should find 2 valid roots. Check the root of each piece, and if it is in the given domain for that piece, then it is a valid root.

As for the middle piece, just compute the end points, and connect them with a line segment.

$$f(-1)=-2$$

$$f(2)=1$$

So, plot the points $(-1,-2),\,(2,1)$ and connect them.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top