Absorption coefficient and Linear Optical Susceptibility

In summary, the absorption coefficient ##\alpha## is related to the complex part of the refractive index ##n^*=n+ik## and the linear optical susceptibility ##\chi## by a quadratic equation. To solve for ##\chi##, one can either assume a complex form and separate the real and imaginary parts, or solve for ##k## directly in terms of ##\chi##.
  • #1
PhysicsTruth
117
18
Homework Statement
For a complex refractive index ##n^*=n+ik##, establish the relationship between the absorption coefficient and linear optical susceptibility. Take ##(n+ik)^2 = \epsilon = 1 + \chi##
Relevant Equations
##(n+ik)^2 = \epsilon = 1+ \chi##
##I=I_0 e^{-\alpha z}##
##\alpha = \frac{4\pi k}{\lambda}##
##\alpha## is considered to be the absorption coefficient for a beam of light of maximum intensity ##I_0##. It's related to the complex part of the refractive index as we have shown above. Now, I have a doubt. Should I solve for ##k## from the quadratic equation in terms of the linear optical susceptibility ##\chi## directly, or should I assume a complex form of ##\chi## and separate the real and imaginary terms and then proceed?
 
Physics news on Phys.org
  • #2
PhysicsTruth said:
Homework Statement:: For a complex refractive index ##n^*=n+ik##, establish the relationship between the absorption coefficient and linear optical susceptibility. Take ##(n+ik)^2 = \epsilon = 1 + \chi##
I've (extremely) limited knowledge of this topic. But, since no one else has answered yet, see if this helps...

First note that:
##(n+ik)^2 = \epsilon = 1 + \chi##
should be:
##(n+ik)^2 = \epsilon_r = 1 + \chi##

The equation tells you that susceptibility, ##\chi##, and relative permittivity, ##\epsilon_r##, are being treated as complex quantities.

PhysicsTruth said:
... or should I assume a complex form of ##\chi## and separate the real and imaginary terms and then proceed?
That sound like the way to go. It only requires simple algebra to express the real and imaginary parts of ##\chi## in terms of ##\alpha## (along with ##n## and ##\lambda##).
 
  • Like
Likes vanhees71 and PhysicsTruth
  • #3
Yeah, I've done that thankfully. Thanks for the heads up!
 
  • Like
Likes vanhees71 and Steve4Physics

Similar threads

Back
Top