- #1
Colleen G
- 6
- 0
Homework Statement
If ≡(mod), ≡(mod),and gcd(,)=1,provethat ≡ (mod ).
Homework Equations
If ≡(mod)→n|ab-cd
≡(mod)→n|b-d
gcd(,)=1→ relatively prime. So bx+ny=1
Need to show n|a-c→a-c=nw
The Attempt at a Solution
If n|ab-cd, then nk=ab-cd
If n|b-d, then nl=b-d
If n|ab-cd AND n|b-d, then n|p(ab-cd)+q(b-d). So pab-pcd+qb-qd.
pad-pcd+qb-qd
=pab+qb-pcd-qd
=b(pa+q) +d(-pc-q)
I'm stuck! Don't know if this is going anywhere.