- #1
tropian1
- 7
- 0
Member warned about posting without the template and with no effort
Let N be a normal subgroup of a group G and let f:G→H be a homomorphism of groups such that the restriction of f to N is an isomorphism N≅H. Prove that G≅N×K, where K is the kernel of f.
I'm having trouble defining a function to prove this. Could anyone give me a start on this?
I'm having trouble defining a function to prove this. Could anyone give me a start on this?