- #1
JaredMTg
- 11
- 2
Hello,
My question is about accelerating charges generating electromagnetic radiation, and is more of a theoretical one, or a thought-experiment in my head...probably because I'm not totally understanding something.
I was playing with this applet which simulates the electric field lines of a charged particle under different types of acceleration:
https://phet.colorado.edu/sims/radiating-charge/radiating-charge_en.html
This led me to understand that "waves" in the electric field are basically created because a charged particle accelerates, which generates a change in its electric field - "compressions" and "rarefactions" in a sense - and the particle's infinitely-extending field throughout space cannot "update" instantaneously - i.e. there is a limit to the speed of propagation of the change (or "information") in the field, which we know to be the speed of light, c
My question is, is there anything inherent about the electric field that makes it unable for a variation in the electric field to propagate faster than the speed of light? I realize that Maxwell's equations indicate that a changing electric field generates a magnetic field, which is also non-constant and continues the propagation of the electric field. Therefore, any accelerating charge produces varying magnetic and electric fields which are inextricably linked, and due to the nature of permittivity and permeability of space, this process happens at the speed of light, c.
But suppose for a minute that you "de-coupled" the electric field from the magnetic one (even if no such thing is possible in reality), and tried to look at things the way they are shown in the applet above (i.e. without magnetic fields), and you understood "electric waves" as simply compressions and rarefactions in the electric field due to the disturbance of the charged particle's motion. Does the idea of an electric field wave in isolation correspond to anything in physical reality? And would it move at the speed of light?
My question is about accelerating charges generating electromagnetic radiation, and is more of a theoretical one, or a thought-experiment in my head...probably because I'm not totally understanding something.
I was playing with this applet which simulates the electric field lines of a charged particle under different types of acceleration:
https://phet.colorado.edu/sims/radiating-charge/radiating-charge_en.html
This led me to understand that "waves" in the electric field are basically created because a charged particle accelerates, which generates a change in its electric field - "compressions" and "rarefactions" in a sense - and the particle's infinitely-extending field throughout space cannot "update" instantaneously - i.e. there is a limit to the speed of propagation of the change (or "information") in the field, which we know to be the speed of light, c
My question is, is there anything inherent about the electric field that makes it unable for a variation in the electric field to propagate faster than the speed of light? I realize that Maxwell's equations indicate that a changing electric field generates a magnetic field, which is also non-constant and continues the propagation of the electric field. Therefore, any accelerating charge produces varying magnetic and electric fields which are inextricably linked, and due to the nature of permittivity and permeability of space, this process happens at the speed of light, c.
But suppose for a minute that you "de-coupled" the electric field from the magnetic one (even if no such thing is possible in reality), and tried to look at things the way they are shown in the applet above (i.e. without magnetic fields), and you understood "electric waves" as simply compressions and rarefactions in the electric field due to the disturbance of the charged particle's motion. Does the idea of an electric field wave in isolation correspond to anything in physical reality? And would it move at the speed of light?