- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{299}$
For $t \ge 0$ the position of a particle moving along the x-axis is given by $v(t)=\sin t—\cos t$ What is the acceleration of the particle at the point where the velocity is first equal to 0?
$a. \sqrt{2}$
$b. \, —1$
$c. \, 0$
$d. \, 1$
$e. —\sqrt{2}$Ok well originally it was given as $x(t)$ but I changed it to $v(t)$
So via W|A $v(t)=0$ at
$t = 1/4 (4 π n + π), n \in Z$So the first 0 would be $\dfrac{5\pi}{4}$Hopefully so far 🕶
For $t \ge 0$ the position of a particle moving along the x-axis is given by $v(t)=\sin t—\cos t$ What is the acceleration of the particle at the point where the velocity is first equal to 0?
$a. \sqrt{2}$
$b. \, —1$
$c. \, 0$
$d. \, 1$
$e. —\sqrt{2}$Ok well originally it was given as $x(t)$ but I changed it to $v(t)$
So via W|A $v(t)=0$ at
$t = 1/4 (4 π n + π), n \in Z$So the first 0 would be $\dfrac{5\pi}{4}$Hopefully so far 🕶