- #1
guv
- 123
- 22
- Homework Statement
- A tank stores water on the inside. Initially the total mass of the
tank and water is ##M##. A constant horizontal force ##F## to the right is applied on the
tank while water starts leaking out at constant rate ##r## (measured
in kilograms/second). Assume the leaked water is momentarily at
rest with respect to the tank and it's leaked from the left side
of the tank.
Determine the acceleration of the tank as a function of time. Ignore all forms of friction and assume the tank moves on a horizontal surface.
- Relevant Equations
- $$a = \frac{F}{M - rt}$$
$$\vec F = \frac{d (m \vec v)}{dt} = \frac{d m}{dt} \vec v + m \frac{d \vec v}{dt} = - r \vec v + (M - rt) \vec a $$
I would think the first solution is correct but the provided solution to this problem suggests the 2nd solution. Let me know what you guys think about this. Thanks,