- #1
Rekrap999
- 7
- 0
I am sorry for the wall of text but i need some help with a problem in one of my classes. i am still in my semester as an engineer and this problem was given in my college acclimation class (i know it is ridiculous).
One fundamental problem in manned space travel is that the enormous distances require high
velocities to reach an intended destination in a reasonable time, and reaching large velocities also
requires large accelerations. Say you are in a spaceship that is floating in outer space at zero
velocity and no forces acting on it. If the ship’s initial mass is 10000 kgs (including you and its
fuel) and it can produce a stream of superheated gases for propulsion coming out of the ship at a
velocity of 10 km/s, use the equation for conservation of linear momentum in open systems 2
discussed in class (sum forces + rate of linear momentum in – rate of linear momentum out =
d(mv)/dt) to find:
a.- How much is the mass rate for the outlet gases that is needed to get an initial acceleration of
one standard gravity, i.e., 9.8 m/s2
?
b.- If only 1/3 of the ship’s mass can be used for fuel, and assuming the mass rate you obtained
in part a remains constant, how long will it take to exhaust the fuel?
c.- Assuming that the acceleration is maintained constant by using the constant mass rate you
calculated in part a (an assumption that does not hold true in this case), what is the velocity
obtained by the time the fuel is exhausted? Calculate the distance traveled during that time,
which for constant acceleration can be obtained as a*t
2
/2, where a is the acceleration and t is the
time.
One fundamental problem in manned space travel is that the enormous distances require high
velocities to reach an intended destination in a reasonable time, and reaching large velocities also
requires large accelerations. Say you are in a spaceship that is floating in outer space at zero
velocity and no forces acting on it. If the ship’s initial mass is 10000 kgs (including you and its
fuel) and it can produce a stream of superheated gases for propulsion coming out of the ship at a
velocity of 10 km/s, use the equation for conservation of linear momentum in open systems 2
discussed in class (sum forces + rate of linear momentum in – rate of linear momentum out =
d(mv)/dt) to find:
a.- How much is the mass rate for the outlet gases that is needed to get an initial acceleration of
one standard gravity, i.e., 9.8 m/s2
?
b.- If only 1/3 of the ship’s mass can be used for fuel, and assuming the mass rate you obtained
in part a remains constant, how long will it take to exhaust the fuel?
c.- Assuming that the acceleration is maintained constant by using the constant mass rate you
calculated in part a (an assumption that does not hold true in this case), what is the velocity
obtained by the time the fuel is exhausted? Calculate the distance traveled during that time,
which for constant acceleration can be obtained as a*t
2
/2, where a is the acceleration and t is the
time.