- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
A physical system is described by a law of the form $f(E,P,A)=0$, where $E,P,A$ represent, respectively, energy, pressure and surface area. Find an equivalent physical law that relates suitable dimensionless quantities.
That' what I have tried so far:
1st step:
Choice of quantities
Mass: $M$
Time: $T$
Length: $L$
So:
$$[E]=M L^2 T^{-2}$$
$$[P]=ML^{-1}T^{-2}$$
$$[A]=L^2$$2nd step:
Construction of dimonsionless quantitiesThe matrix of dimensions:$A=\begin{bmatrix}
1 & 1 & 0\\
-2 & -2 & 0 \\
2 & -1 &2
\end{bmatrix}$I tried to find the rank, determining the smallest $n$ for which $A^n=I$.$\begin{bmatrix}
1 & 1 & 0\\
-2 & -2 & 0 \\
2 & -1 &2
\end{bmatrix}\begin{bmatrix}
1 & 1 & 0\\
-2 & -2 & 0 \\
2 & -1 &2
\end{bmatrix}=\begin{bmatrix}
-1 & -1 & 0\\
2 & 2 & 0 \\
8 & 2 &4
\end{bmatrix}$$\begin{bmatrix}
-1 & -1 & 0\\
2 & 2 & 0 \\
8 & 2 &4
\end{bmatrix}\begin{bmatrix}
1 & 1 & 0\\
-2 & -2 & 0 \\
2 & -1 &2
\end{bmatrix}=\begin{bmatrix}
1 & 1 & 0\\
-2 & -2 & 0 \\
12 & 0 &8
\end{bmatrix}$But I saw the solution and there should be only one dimensionless quantity, so according to Buckingham Theorem the rank of $A$ should be $2$.
Where is my mistake? (Thinking)
A physical system is described by a law of the form $f(E,P,A)=0$, where $E,P,A$ represent, respectively, energy, pressure and surface area. Find an equivalent physical law that relates suitable dimensionless quantities.
That' what I have tried so far:
1st step:
Choice of quantities
Mass: $M$
Time: $T$
Length: $L$
So:
$$[E]=M L^2 T^{-2}$$
$$[P]=ML^{-1}T^{-2}$$
$$[A]=L^2$$2nd step:
Construction of dimonsionless quantitiesThe matrix of dimensions:$A=\begin{bmatrix}
1 & 1 & 0\\
-2 & -2 & 0 \\
2 & -1 &2
\end{bmatrix}$I tried to find the rank, determining the smallest $n$ for which $A^n=I$.$\begin{bmatrix}
1 & 1 & 0\\
-2 & -2 & 0 \\
2 & -1 &2
\end{bmatrix}\begin{bmatrix}
1 & 1 & 0\\
-2 & -2 & 0 \\
2 & -1 &2
\end{bmatrix}=\begin{bmatrix}
-1 & -1 & 0\\
2 & 2 & 0 \\
8 & 2 &4
\end{bmatrix}$$\begin{bmatrix}
-1 & -1 & 0\\
2 & 2 & 0 \\
8 & 2 &4
\end{bmatrix}\begin{bmatrix}
1 & 1 & 0\\
-2 & -2 & 0 \\
2 & -1 &2
\end{bmatrix}=\begin{bmatrix}
1 & 1 & 0\\
-2 & -2 & 0 \\
12 & 0 &8
\end{bmatrix}$But I saw the solution and there should be only one dimensionless quantity, so according to Buckingham Theorem the rank of $A$ should be $2$.
Where is my mistake? (Thinking)