- #1
Dustinsfl
- 2,281
- 5
All numbers of the form $(-1)^n + (1/m)$, $n,m\in\mathbb{Z}^+$.
Is this true $(-1)^n + (1/m) = (-1,1)$? If so, the accumulation points are $x\in [-1,1]$ and the set is open.
Is this true $(-1)^n + (1/m) = (-1,1)$? If so, the accumulation points are $x\in [-1,1]$ and the set is open.