Acoustic Resonance in Fluid-Filled Cavities

In summary: K and M.)In summary, the conversation discusses the physics of resonance phenomenon and how to find the resonant modes of a water filled spherical cavity. It is mentioned that these modes can be obtained analytically or through FEM eigenvalue analysis, depending on the boundary conditions. The conversation also touches on the effect of placing the water balloon in air and how it changes the natural frequencies. Finally, there is a question about finding natural frequencies for fluid filled cavities embedded in another fluid with different properties.
  • #1
nawidgc
25
0
I am trying to understand the physics of resonance phenomenon. One can find the resonant modes of a water filled spherical cavity either analytically or by using the FEM eigenvalue analysis (K-ω2n M = 0, with K and M being the usual stiffness ans mass matrices in FEM). For the later, we usually set u=0 (Dirichlet bc) or du/dn=0 (Neumann bc) and depending on the boundary condition, the mode shapes and modal frequencies will change.

Let the set of natural frequencies of water filled balloon obtained by this process be denoted as ωn. Now, consider the water balloon to be placed in air and assume I have an acoustic source outside balloon that emits acoustic waves of a frequency that matches with one of the frequencies from the set ωn.

Would this cause the water inside the balloon to resonate at the applied frequency (since it matches with one of its natural frequencies)? My understanding is, once you place the water filled balloon in air, the boundary condition at the interface is no longer u=0 or du/dn=0. So the natural frequencies obtained earlier are no longer correct in this situation.

Alternatively, how can one find the natural frequencies of fluid filled cavities that are embedded inside another fluid with different density and sound speed? Appreciate any comments or answers.
 
Last edited by a moderator:
Engineering news on Phys.org
  • #2
nawidgc said:
I am trying to understand the physics of resonance phenomenon. One can find the resonant modes of a water filled spherical cavity either analytically or by using the FEM eigenvalue analysis (K-ω2n M = 0, with K and M being the usual stiffness ans mass matrices in FEM). For the later, we usually set u=0 (Dirichlet bc) or du/dn=0 (Neumann bc) and depending on the boundary condition, the mode shapes and modal frequencies will change.

Let the set of natural frequencies of water filled balloon obtained by this process be denoted as ωn. Now, consider the water balloon to be placed in air and assume I have an acoustic source outside balloon that emits acoustic waves of a frequency that matches with one of the frequencies from the set ωn.

Would this cause the water inside the balloon to resonate at the applied frequency (since it matches with one of its natural frequencies)? My understanding is, once you place the water filled balloon in air, the boundary condition at the interface is no longer u=0 or du/dn=0. So the natural frequencies obtained earlier are no longer correct in this situation.

Alternatively, how can one find the natural frequencies of fluid filled cavities that are embedded inside another fluid with different density and sound speed? Appreciate any comments or answers.

To find resonance frequencies for external excitation (maximal amplitude at boundary), you basically should replace 0-th order spherical Bessel function j0(r) for 1st order j1(r)
 

FAQ: Acoustic Resonance in Fluid-Filled Cavities

1. What is acoustic resonance in fluid-filled cavities?

Acoustic resonance in fluid-filled cavities is a phenomenon where sound waves are amplified and reinforced within a confined space filled with a fluid. This causes the fluid to vibrate at a specific frequency, known as the resonant frequency.

2. How does acoustic resonance in fluid-filled cavities occur?

Acoustic resonance in fluid-filled cavities occurs when the natural frequency of the fluid-filled cavity matches the frequency of the sound waves. This causes the sound waves to reflect back and forth within the cavity, creating a standing wave and resulting in an increase in sound intensity.

3. What are some real-world applications of acoustic resonance in fluid-filled cavities?

Acoustic resonance in fluid-filled cavities has many practical applications, including in musical instruments, such as flutes and organs, where the cavity acts as a resonator to amplify sound. It is also used in various industrial processes, such as ultrasonic cleaning and ultrasonic welding, where the resonant frequency is used to enhance the efficiency of the process.

4. How is acoustic resonance in fluid-filled cavities studied and measured?

Scientists use various techniques to study and measure acoustic resonance in fluid-filled cavities, including using specialized equipment such as microphones and oscilloscopes to measure sound intensity and frequency. They also use mathematical models and simulations to understand the behavior of sound waves within the cavity.

5. What are some factors that can affect acoustic resonance in fluid-filled cavities?

The resonant frequency of a fluid-filled cavity can be influenced by several factors, including the size and shape of the cavity, the properties of the fluid, and the material of the cavity walls. Additionally, any changes in these factors can alter the resonant frequency, making it important to carefully consider these variables in practical applications of acoustic resonance in fluid-filled cavities.

Similar threads

Replies
12
Views
3K
Replies
9
Views
1K
Replies
1
Views
2K
Replies
1
Views
1K
Replies
14
Views
2K
Replies
2
Views
2K
Back
Top