MHB ACT Problem: Sum Of Even Integers

AI Thread Summary
The sum of all even integers between 1 and 101 can be efficiently calculated using the formula for an arithmetic series. With the first term as 2 and the last term as 100, the series has 50 terms. The sum can be computed using the formula S = n/2 * (a1 + an), where n is the number of terms, a1 is the first term, and an is the last term. An alternative method involves using S = 2 * Σ(k) for k from 1 to 50, which simplifies the calculation. Both methods provide a quicker solution than the initial formula mentioned.
816318
Messages
14
Reaction score
0
What is the sum of all the even integers between 1 and 101? Is there an easier way besides using the formula: (B-A+1)(B+A)/2?

It just takes too much time.
 
Mathematics news on Phys.org
Re: ACT problem

It's an arithmetic series with first term 2 and fifty terms, so it can easily be calculated as

$$\frac{n}{2}[2a_1+(n-1)d]$$

with $n$ (the number of terms) = $50$, $a_1$ (the first term) = $2$ and $d$ (the common difference) = $2$.

Alternatively, use

$$\frac{n(a_1+a_n)}{2}$$

with $a_n$ being the last term ($100$).
 
Re: ACT problem

Another approach would be:

$$S=2\sum_{k=1}^{50}(k)=50\cdot51$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top