- #1
Baela
- 17
- 2
We know that a metric tensor raises or lowers the indices of a tensor, for e.g. a Levi-Civita tensor. If we are in ##4D## spacetime, then
\begin{align}
g_{mn}\epsilon^{npqr}=\epsilon_{m}{}^{pqr}
\end{align}
where ##g_{mn}## is the metric and ##\epsilon^{npqr}## is the Levi-Civita tensor.
The Levi-Civita symbol, which we can denote by ##\varepsilon^{npqr}##, is not a tensor. It obeys the relation
\begin{align}
\varepsilon^{npqr}=\varepsilon_{npqr}.
\end{align}
What happens if the metric tensor is multiplied with the Levi-Civita symbol ##\varepsilon^{npqr}##?
\begin{align}
g_{mn}\varepsilon^{npqr}=\,?
\end{align}
\begin{align}
g_{mn}\epsilon^{npqr}=\epsilon_{m}{}^{pqr}
\end{align}
where ##g_{mn}## is the metric and ##\epsilon^{npqr}## is the Levi-Civita tensor.
The Levi-Civita symbol, which we can denote by ##\varepsilon^{npqr}##, is not a tensor. It obeys the relation
\begin{align}
\varepsilon^{npqr}=\varepsilon_{npqr}.
\end{align}
What happens if the metric tensor is multiplied with the Levi-Civita symbol ##\varepsilon^{npqr}##?
\begin{align}
g_{mn}\varepsilon^{npqr}=\,?
\end{align}