MHB Acute angle of right triangles

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Angle Triangles
AI Thread Summary
The discussion centers on the properties of right triangles formed by a rectangle inscribed in a semicircle with a radius of 1. It is clarified that the acute angles of these triangles are not necessarily all equal to 45 degrees, as they depend on the rectangle's height. The area of the rectangle is set to 1, leading to a relationship between its height and width that can be solved using Pythagorean Theorem. Trigonometric methods can also be applied to find the angles, confirming that they can indeed be 45 degrees under certain conditions. Ultimately, both geometric and trigonometric approaches yield consistent results regarding the dimensions and angles of the triangles.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have a rectangle inside a semicircle with radius $1$ :

View attachment 9703

From the midpoint of the one side we draw a line to the opposite vertices and one line to the opposite edge.

View attachment 9704

Are the acute angles of the right triangles all equal to $45^{\circ}$ ? (Wondering)

All four triangles are similar, aren't they? We have that the hypotenuse of each right triangle is equal to $1$, since it is equal to the radius of the circle.
I am stuck right now about the angles. (Wondering)
 

Attachments

  • rechteck.JPG
    rechteck.JPG
    3.5 KB · Views: 115
  • triangles.JPG
    triangles.JPG
    4.3 KB · Views: 111
Mathematics news on Phys.org
A little thought should show you those statements are NOT true! There exist many different such rectangles, with many different such angles, depending on the height of the rectangle.
 
HallsofIvy said:
A little thought should show you those statements are NOT true! There exist many different such rectangles, with many different such angles, depending on the height of the rectangle.

In this case the resulting smaller rectangles look like squares and that's why maybe I got confused. (Doh)

So when we know that the area of the big rectangle is $1$ and we want to calculate the length of the sides, it is not a good idea to use trigonometry, right? (Wondering)

It is better to do the following:

View attachment 9705

Let $x$ be the height and $w$ the width. Since $M$ is the midpoint we get that $w=2y$.
At the right triangle we can Pythagoras' Theorem and we get that $y=\sqrt{1-x^2}$.
The area of the big rectangle is $1$ so we get that $x\cdot w=1 \Rightarrow x\cdot 2\sqrt{1-x^2}=1$ and from that eauation we can calculate $x$. Btw we would get the same result if we would consider the acute angles to be $45^{\circ}$, so in this case they are indeed like that.
 

Attachments

  • height.JPG
    height.JPG
    3.5 KB · Views: 128
Last edited by a moderator:
mathmari said:
So when we know that the area of the big rectangle is $1$ and we want to calculate the length of the sides, it is not a good idea to use trigonometry, right?

Hey mathmari!

We can do it with trigonometry as well.
The width of the rectangle is $2\cos\phi$ and the height is $\sin\phi$, isn't it? (Thinking)
So the area is:
$$2\cos\phi \cdot \sin\phi = \sin(2\phi) =1\implies \phi=\frac\pi 4$$

mathmari said:
Let $x$ be the height and $w$ the width. Since $M$ is the midpoint we get that $w=2y$.
At the right triangle we can Pythagoras' Theorem and we get that $y=\sqrt{1-x^2}$.
The area of the big rectangle is $1$ so we get that $x\cdot w=1 \Rightarrow x\cdot 2\sqrt{1-x^2}=1$ and from that eauation we can calculate $x$.

Btw we would get the same result if we would consider the acute angles to be $45^{\circ}$, so in this case they are indeed like that.

Yep. That works as well. (Nod)
 
Thanks a lot! 😇
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top