- #1
Prove It
Gold Member
MHB
- 1,465
- 24
Solve the following IVP using Laplace Transforms:
$\displaystyle \frac{\mathrm{d}y}{\mathrm{d}t} + 11\,y = 3\,t, \quad y\left( 0 \right) = 5$
Take the Laplace Transform of the equation:
$\displaystyle \begin{align*} s\,Y\left( s \right) - y\left( 0 \right) + 11\,Y\left( s \right) &= \frac{3}{s^2} \\
s\,Y\left( s \right) - 5 + 11\,Y\left( s \right) &= \frac{3}{s^2} \\
\left( s + 11 \right) Y\left( s \right) &= \frac{3}{s^2} + 5 \\
Y\left( s \right) &= \frac{3}{s^2 \,\left( s + 11 \right) } + \frac{5}{s + 11} \end{align*}$
Apply Partial Fractions:
$\displaystyle \begin{align*}
\frac{A}{s} + \frac{B}{s^2} + \frac{C}{s + 11} &\equiv \frac{3}{s^2 \,\left( s + 11 \right) } \\
A\,s\left( s + 11 \right) + B \left( s + 11 \right) + C\,s^2 &\equiv 3
\end{align*}$
Let $\displaystyle s = 0 \implies 11\,B = 3 \implies B = \frac{3}{11}$
Let $\displaystyle s = -11 \implies 121\,C = 3 \implies C = \frac{3}{121}$
Then $\displaystyle A\,s\left( s + 11 \right) + \frac{3}{11} \left( s + 11 \right) + \frac{3}{121}\,s^2 \equiv 3$
Let $\displaystyle s = 1$
$\displaystyle \begin{align*}
12\,A + \frac{36}{11} + \frac{3}{121} &= 3 \\
12\,A + \frac{396}{121} + \frac{3}{121} &= \frac{33}{121} \\
12\,A &= -\frac{366}{121} \\
A &= -\frac{61}{242}
\end{align*}$
So
$\displaystyle \begin{align*}
Y\left( s \right) &= -\frac{61}{242}\left( \frac{1}{s} \right) + \frac{3}{11} \left( \frac{1}{s^2} \right) + \frac{3}{121} \left( \frac{1}{s + 11} \right) + 5 \left( \frac{1}{s + 11 } \right) \\
Y\left( s \right) &= -\frac{61}{242} \left( \frac{1}{s} \right) + \frac{3}{11} \left( \frac{1}{s^2} \right) + \frac{608}{121} \left( \frac{1}{s + 11} \right) \\
\\
y\left( t \right) &= -\frac{61}{242} + \frac{3}{11}\,t + \frac{608}{121}\,\mathrm{e}^{-11\,t}
\end{align*}$