MHB Adding Trigonometric Functions

AI Thread Summary
The discussion revolves around the challenge of adding two trigonometric functions: 20-10cos(x*pi/4) and 30+20sin(x*pi/4). The user struggles to find a suitable formula for combining these functions and expresses confusion over the addition/subtraction of trigonometric functions. A helpful formula is provided, which states that a*sin(θ) - b*cos(θ) can be expressed as √(a²+b²)sin(θ - φ), with φ defined by the ratio of b to a. The user acknowledges the clarity gained after understanding this formula. This exchange highlights the importance of specific trigonometric identities in solving complex problems.
TrigEatsMe
Messages
6
Reaction score
0
I've muddled my way through the majority of my weekend assignment and I'm stuck on a problem where I need to add two formulas together.

1.) 20-10cos(x*pi/4)
2.) 30+20sin(x*pi/4)

I end up with a sinusoidal function which I can then graph and determine the max, min, etc.

We recently went over the addition/subtraction of trigonometric functions using formulas, but none of them match up with this kind of question. I'm missing something.
 
Mathematics news on Phys.org
TrigEatsMe said:
I've muddled my way through the majority of my weekend assignment and I'm stuck on a problem where I need to add two formulas together.

1.) 20-10cos(x*pi/4)
2.) 30+20sin(x*pi/4)

I end up with a sinusoidal function which I can then graph and determine the max, min, etc.

We recently went over the addition/subtraction of trigonometric functions using formulas, but none of them match up with this kind of question. I'm missing something.
The formula you need here is the one that says $a\sin\theta - b\cos\theta = \sqrt{a^2+b^2}\sin(\theta - \phi)$, where $\tan\phi = \dfrac ba.$
 
Got it -- weird how it clicks the following day sometimes. THanks! :)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top