- #1
usrename
- 1
- 0
- Homework Statement
- Two moles of a gas, whose initial temperature and pressure are 200ºC and 20 atm, undergo an adiabatic expansion until the temperature reaches 100ºC. Calculate the pressure and the volume at the end of the process if the constant pressure molar heat capacity follows this formula:
- Relevant Equations
- c_p= a + bT + cT²
The statement does not say whether the process is reversible or not, but I suppose the only way to solve the problem is by thinking it actually is.
I tried using the formula for reversible adiabatic processes, i.e. PVγ = constant. First, I calculated the initial volume with the ideal gas law. Then, I tried to find /gamma as the quotient between cp and cv. If I take cv to be cp - R, then the value of γ depends on temperature.
I think the way to do is by calculating P0V0γ0 using the value of γ at the initial temperature and then using γF, i.e. the value of γ at the final temperature, on the other side of the equation PFVFγF. However, I am not sure if I can use the formula this way.
Is this approach correct?
I tried using the formula for reversible adiabatic processes, i.e. PVγ = constant. First, I calculated the initial volume with the ideal gas law. Then, I tried to find /gamma as the quotient between cp and cv. If I take cv to be cp - R, then the value of γ depends on temperature.
I think the way to do is by calculating P0V0γ0 using the value of γ at the initial temperature and then using γF, i.e. the value of γ at the final temperature, on the other side of the equation PFVFγF. However, I am not sure if I can use the formula this way.
Is this approach correct?
Last edited: