- #1
a_h
- 5
- 0
Hello Fellow Physicists!
I'm having trouble with a problem from a graduate course in Statistical Mechanics. It's a two part question; I've got the first part, it's the second part that's giving me trouble.
The problem is about reversible/adiabatic processes, thinking of "reversible" as meaning "constant entropy." In part a (which I got, but it may help to have it here), we need to show that the evolution of a classical ideal gas obeys
[tex]
TV^{\frac{2}{3}}=\mbox{constant.}
[/tex]
I did this by using [tex] S=-\frac{\partial F}{\partial T} [/tex] with [tex] F=U-\mu N, U=\frac{3}{2}NT [/tex]. To get [tex] \frac{\partial \mu}{\partial T} [/tex], I solved
[tex]
e^{\frac{\mu}{T}}=n\lambda^{3}=\frac{N}{V} \frac{h^{3}}{(2\pi mT)^{3/2}}
[/tex]
for mu. ([tex] \lambda [/tex] is the thermodynamic wavelength, n is the number density of the gas.)
Now for part b. We have a classical ideal gas in a cylinder. It is in equilibrium at a temperature [tex] T_{0} [/tex]. Now we slowly (adiabatically and reversibly) apply a uniform external field to the container, in a direction along its axis of symmetry. When we are done, there is a potential in our container given by
[tex]
u(z)=fz
[/tex]
where z is the distance along that symmetry axis and f is a constant. The question is, what is the temperature of the gas at the end of the process?
I would think that we should use the same assumptions:
[tex] S=-\frac{\partial F}{\partial T}=\mbox{constant} [/tex]
and [tex] F=U-\mu N [/tex], but I don't know how u(z) gets incorporated into U. Any ideas?
Thanks for all of your time, everyone.
I'm having trouble with a problem from a graduate course in Statistical Mechanics. It's a two part question; I've got the first part, it's the second part that's giving me trouble.
The problem is about reversible/adiabatic processes, thinking of "reversible" as meaning "constant entropy." In part a (which I got, but it may help to have it here), we need to show that the evolution of a classical ideal gas obeys
[tex]
TV^{\frac{2}{3}}=\mbox{constant.}
[/tex]
I did this by using [tex] S=-\frac{\partial F}{\partial T} [/tex] with [tex] F=U-\mu N, U=\frac{3}{2}NT [/tex]. To get [tex] \frac{\partial \mu}{\partial T} [/tex], I solved
[tex]
e^{\frac{\mu}{T}}=n\lambda^{3}=\frac{N}{V} \frac{h^{3}}{(2\pi mT)^{3/2}}
[/tex]
for mu. ([tex] \lambda [/tex] is the thermodynamic wavelength, n is the number density of the gas.)
Now for part b. We have a classical ideal gas in a cylinder. It is in equilibrium at a temperature [tex] T_{0} [/tex]. Now we slowly (adiabatically and reversibly) apply a uniform external field to the container, in a direction along its axis of symmetry. When we are done, there is a potential in our container given by
[tex]
u(z)=fz
[/tex]
where z is the distance along that symmetry axis and f is a constant. The question is, what is the temperature of the gas at the end of the process?
I would think that we should use the same assumptions:
[tex] S=-\frac{\partial F}{\partial T}=\mbox{constant} [/tex]
and [tex] F=U-\mu N [/tex], but I don't know how u(z) gets incorporated into U. Any ideas?
Thanks for all of your time, everyone.