- #1
MBM1
- 4
- 0
Hi I have the integral
$G(x,y)=\int_{0}^{2\pi}d\theta\frac{1}{\sqrt{a_1\cos(2\theta)+a_2\sin(2\theta)+1}}\frac{1}{x\cos(\theta)+y\sin(\theta)}$I broke it into two terms in the hopes of simplifying the integrand,
$G(x,y)=\int_{0}^{2\pi}d\theta(\frac{1}{a_1\cos(2\theta)+a_2\sin(2\theta)}-\frac{\sqrt{a_1\cos(2\theta)+a_2\sin(2\theta)+1}}{a_1\cos(2\theta)+a_2\sin(2\theta)})\frac{1}{x\cos(\theta)+y\sin(\theta)}$
By posing restrictions on the values of $a_1$,$a_2$,$x$,$y$ I could represent the sum of the cofunctions to one term.
for $a_1>0$,$a_2$ any number between $-\infty$ and $+\infty$
$a_1\cos(2\theta)+a_2\sin(2\theta)= A_m\cos(2\theta-2\theta_m)$
for $a_1<0$,$a_2$ any number between -$\infty$ and +$\infty$
$a_1\cos(2\theta)+a_2\sin(2\theta)= -A_m\cos(2\theta-2\theta_m)$
for $x>0$,$-\infty<y<\infty$
$x\cos(\theta)+y\sin(\theta)= B_m\cos(\theta-\theta_{xy})$
for $x<0$,$-\infty<y<\infty$
$x\cos(\theta)+y\sin(\theta)= -B_m\cos(\theta-\theta_{xy})$
Therefore for $a_1>0$,$a_2$ any number between -$\infty$ and +$\infty$, $x>0$ and $-\infty<y<\infty$
$G(x,y)= \int_{0}^{2\pi}d\theta (\frac{1}{A_m\cos(2\theta-2\theta_m)}\frac{1}{B_m\cos(\theta-\theta_{xy})}-\frac{\sqrt{1+A_m\cos(2\theta-2\theta_m)}}{A_m\cos(2\theta-2\theta_m)} \frac{1}{B_m\cos(\theta-\theta_{xy})})$
I can solve the term on the left however I am finding difficulties to solve the one on the right. Any help would be appreciated.
$G(x,y)=\int_{0}^{2\pi}d\theta\frac{1}{\sqrt{a_1\cos(2\theta)+a_2\sin(2\theta)+1}}\frac{1}{x\cos(\theta)+y\sin(\theta)}$I broke it into two terms in the hopes of simplifying the integrand,
$G(x,y)=\int_{0}^{2\pi}d\theta(\frac{1}{a_1\cos(2\theta)+a_2\sin(2\theta)}-\frac{\sqrt{a_1\cos(2\theta)+a_2\sin(2\theta)+1}}{a_1\cos(2\theta)+a_2\sin(2\theta)})\frac{1}{x\cos(\theta)+y\sin(\theta)}$
By posing restrictions on the values of $a_1$,$a_2$,$x$,$y$ I could represent the sum of the cofunctions to one term.
for $a_1>0$,$a_2$ any number between $-\infty$ and $+\infty$
$a_1\cos(2\theta)+a_2\sin(2\theta)= A_m\cos(2\theta-2\theta_m)$
for $a_1<0$,$a_2$ any number between -$\infty$ and +$\infty$
$a_1\cos(2\theta)+a_2\sin(2\theta)= -A_m\cos(2\theta-2\theta_m)$
for $x>0$,$-\infty<y<\infty$
$x\cos(\theta)+y\sin(\theta)= B_m\cos(\theta-\theta_{xy})$
for $x<0$,$-\infty<y<\infty$
$x\cos(\theta)+y\sin(\theta)= -B_m\cos(\theta-\theta_{xy})$
Therefore for $a_1>0$,$a_2$ any number between -$\infty$ and +$\infty$, $x>0$ and $-\infty<y<\infty$
$G(x,y)= \int_{0}^{2\pi}d\theta (\frac{1}{A_m\cos(2\theta-2\theta_m)}\frac{1}{B_m\cos(\theta-\theta_{xy})}-\frac{\sqrt{1+A_m\cos(2\theta-2\theta_m)}}{A_m\cos(2\theta-2\theta_m)} \frac{1}{B_m\cos(\theta-\theta_{xy})})$
I can solve the term on the left however I am finding difficulties to solve the one on the right. Any help would be appreciated.