- #36
alyafey22
Gold Member
MHB
- 1,561
- 1
Re: Integration lessons (continued)
4.7.2 Exercises
Exercise 1
Proof
Integration by parts
$$I = x\text{erfc}^2(x)\left. \right]^\infty_0 -2\int^\infty_0 x\text{erfc}'(x)\text{erfc}(x)\,dx $$
The first integral goes to 0
$$I = -2\int^\infty_0 x\,\text{erfc}'(x)\text{erfc}(x)\,dx$$
The derivative of the complementary error function
$$\text{erfc}'(x) = (1-\text{erf}(x))'= -\frac{2}{\sqrt{\pi}}e^{-x^2}$$
$$I= \frac{4}{\sqrt{\pi}}\int^\infty_0xe^{-x^2}\text{erfc}(x)\,dx$$
Integration by parts again we have
$$I=\frac{2}{\sqrt{\pi}}e^{-x^2}\text{erfc}(x)\left. \right]^\infty_0-\frac{4}{\pi}\int^\infty_0e^{-2t^2}\,dt $$
At infinity the integral goes to 0 and at 0 we have
$$\frac{2}{\sqrt{\pi}}e^{-x^2}\text{erfc}(x)_{x=0}=\frac{2}{\sqrt{\pi}}(1-\text{erf}(0))=\frac{2}{\sqrt{\pi}}$$
$$\int^\infty_0e^{-2t^2}\,dt = \frac{\sqrt{\pi}}{2\sqrt{2}}$$
Collecting the results together we have
$$I = \frac{2}{\sqrt{\pi}}-\frac{\sqrt{\pi}}{2\sqrt{2}} \times \frac{4}{\pi}=\frac{2-\sqrt{2}}{\sqrt{\pi}} $$Exercise 2
Proof
Using the substitution $ x=\sqrt{t}$
$$\frac{1}{2}\int^\infty_0 \sin(t) t^{-\frac{1}{2}}\text{erfc}(\sqrt{t}) \,dx $$
Consider the function
$$I(a) = \frac{1}{2}\int^\infty_0 \sin(t) t^{-\frac{1}{2}}\text{erfc}(a\sqrt{t}) \,dt$$
Differentiating with respect to $a$ we have
$$I'(a) = \frac{-1}{\sqrt{\pi}}\int^\infty_0 \sin(t) e^{-a^2t}\,dt=\frac{-1}{\sqrt{\pi}}\cdot \frac{1}{a^4+1}$$
Now integrating with respect to $a$
$$I(a) = \frac{-1}{\sqrt{\pi}}\int^a_0 \frac{dx}{x^4+1}+C$$
To evaluate the constant we take $a \to \infty$
$$I(\infty) = \frac{-1}{\sqrt{\pi}}\int^\infty_0\frac{dx}{x^4+1}+C$$
The function has an anti-derivative and the value is
$$\frac{-1}{\sqrt{\pi}} \int^\infty_0\frac{dx}{x^4+1}=-\frac{\sqrt{\pi}}{2\sqrt{2}}$$
and knowing that
$$\text{erfc}(\infty)=0 \,\,\, \implies \,\,\,\, C =\frac{\sqrt{\pi}}{2\sqrt{2}} $$
Finally we get
$$I(a) = \frac{-1}{\sqrt{\pi}}\int^a_0 \frac{dx}{x^4+1}+\frac{\sqrt{\pi}}{2\sqrt{2}}$$
Plugging $a=1$ we have our integral
$$I(1) = \int^\infty_0 \sin(x^2) \text{erfc}(x) \,dx=\frac{\sqrt{\pi}}{2\sqrt{2}}-\frac{1}{\sqrt{\pi}}\int^1_0 \frac{dx}{x^4+1}$$
Also knowing that
$$\frac{1}{\sqrt{\pi}}\int^1_0 \frac{dx}{x^4+1}=\frac{\pi+2 \coth^{-1}\sqrt{2}}{4 \sqrt{2\pi}}$$
$$ \int^\infty_0 \sin(x^2) \text{erfc}(x) \,dx=\frac{\pi-2 \coth^{-1}\sqrt{2}}{4 \sqrt{2\pi}}$$
[HW]
Can you find closed forms for
\(\displaystyle \int^\infty_0 \text{erfc}^3(x)\, dx = ?\)
\(\displaystyle \int^\infty_0 \text{erfc}^4(x)\, dx = ? \)
What about
\(\displaystyle \int^\infty_0 \text{erfc}^n(x)\, dx = ? \)
4.7.2 Exercises
Exercise 1
\(\displaystyle \int^\infty_0 \text{erfc}^2(x)\,dx = \frac{2-\sqrt{2}}{\sqrt{\pi}}
\)
\)
Proof
Integration by parts
$$I = x\text{erfc}^2(x)\left. \right]^\infty_0 -2\int^\infty_0 x\text{erfc}'(x)\text{erfc}(x)\,dx $$
The first integral goes to 0
$$I = -2\int^\infty_0 x\,\text{erfc}'(x)\text{erfc}(x)\,dx$$
The derivative of the complementary error function
$$\text{erfc}'(x) = (1-\text{erf}(x))'= -\frac{2}{\sqrt{\pi}}e^{-x^2}$$
$$I= \frac{4}{\sqrt{\pi}}\int^\infty_0xe^{-x^2}\text{erfc}(x)\,dx$$
Integration by parts again we have
$$I=\frac{2}{\sqrt{\pi}}e^{-x^2}\text{erfc}(x)\left. \right]^\infty_0-\frac{4}{\pi}\int^\infty_0e^{-2t^2}\,dt $$
At infinity the integral goes to 0 and at 0 we have
$$\frac{2}{\sqrt{\pi}}e^{-x^2}\text{erfc}(x)_{x=0}=\frac{2}{\sqrt{\pi}}(1-\text{erf}(0))=\frac{2}{\sqrt{\pi}}$$
$$\int^\infty_0e^{-2t^2}\,dt = \frac{\sqrt{\pi}}{2\sqrt{2}}$$
Collecting the results together we have
$$I = \frac{2}{\sqrt{\pi}}-\frac{\sqrt{\pi}}{2\sqrt{2}} \times \frac{4}{\pi}=\frac{2-\sqrt{2}}{\sqrt{\pi}} $$Exercise 2
\(\displaystyle \int^\infty_0 \sin(x^2) \text{erfc}(x) \,dx =\frac{\pi-2 \coth^{-1}\sqrt{2}}{4 \sqrt{2\pi}}\)
Proof
Using the substitution $ x=\sqrt{t}$
$$\frac{1}{2}\int^\infty_0 \sin(t) t^{-\frac{1}{2}}\text{erfc}(\sqrt{t}) \,dx $$
Consider the function
$$I(a) = \frac{1}{2}\int^\infty_0 \sin(t) t^{-\frac{1}{2}}\text{erfc}(a\sqrt{t}) \,dt$$
Differentiating with respect to $a$ we have
$$I'(a) = \frac{-1}{\sqrt{\pi}}\int^\infty_0 \sin(t) e^{-a^2t}\,dt=\frac{-1}{\sqrt{\pi}}\cdot \frac{1}{a^4+1}$$
Now integrating with respect to $a$
$$I(a) = \frac{-1}{\sqrt{\pi}}\int^a_0 \frac{dx}{x^4+1}+C$$
To evaluate the constant we take $a \to \infty$
$$I(\infty) = \frac{-1}{\sqrt{\pi}}\int^\infty_0\frac{dx}{x^4+1}+C$$
The function has an anti-derivative and the value is
$$\frac{-1}{\sqrt{\pi}} \int^\infty_0\frac{dx}{x^4+1}=-\frac{\sqrt{\pi}}{2\sqrt{2}}$$
and knowing that
$$\text{erfc}(\infty)=0 \,\,\, \implies \,\,\,\, C =\frac{\sqrt{\pi}}{2\sqrt{2}} $$
Finally we get
$$I(a) = \frac{-1}{\sqrt{\pi}}\int^a_0 \frac{dx}{x^4+1}+\frac{\sqrt{\pi}}{2\sqrt{2}}$$
Plugging $a=1$ we have our integral
$$I(1) = \int^\infty_0 \sin(x^2) \text{erfc}(x) \,dx=\frac{\sqrt{\pi}}{2\sqrt{2}}-\frac{1}{\sqrt{\pi}}\int^1_0 \frac{dx}{x^4+1}$$
Also knowing that
$$\frac{1}{\sqrt{\pi}}\int^1_0 \frac{dx}{x^4+1}=\frac{\pi+2 \coth^{-1}\sqrt{2}}{4 \sqrt{2\pi}}$$
$$ \int^\infty_0 \sin(x^2) \text{erfc}(x) \,dx=\frac{\pi-2 \coth^{-1}\sqrt{2}}{4 \sqrt{2\pi}}$$
[HW]
Can you find closed forms for
\(\displaystyle \int^\infty_0 \text{erfc}^3(x)\, dx = ?\)
\(\displaystyle \int^\infty_0 \text{erfc}^4(x)\, dx = ? \)
What about
\(\displaystyle \int^\infty_0 \text{erfc}^n(x)\, dx = ? \)
Last edited: