B Advice to obtain the domain of compound functions

  • B
  • Thread starter Thread starter mcastillo356
  • Start date Start date
  • Tags Tags
    Domain Functions
AI Thread Summary
The discussion revolves around understanding the domain of the inverse secant function, sec^{-1} x, and how it relates to the cosine function. The domain is defined as the union of intervals (-∞, -1] and [1, ∞), along with specific ranges for the inverse function. The user seeks guidance on determining the domain and range of cos^{-1}(1/x) using only the known domains of arccos(x) and the reciprocal function. There is also a query about a potential typo regarding the reflection of the secant function in relation to its inverse. The thread concludes with a technical note about formatting issues encountered while posting formulas.
mcastillo356
Gold Member
Messages
639
Reaction score
348
TL;DR Summary
I'm familiar to this ground, but the function composition I introduce is difficult for me
Hi PF

I have a quote from Spanish 6th edition of "Calculus", by Robert A. Adams, and some queries. I translate it this way:"The inverse of secondary trigonometric functions can easily be calculated with the reciprocal function. For example
DEFINITION 13 The inverse function of secant ##sec^{-1} x## (or ##\mbox{arcsec}x##)
$$sec^{-1}=cos^{-1}\left({\dfrac{1}{x}}\right)\quad for\;|x|\geq 1$$
The domain of ##\sec^{-1}## is the union of intervals ##(-\infty,-1]\cup{[1,\infty)}## and ##[0,\dfrac{\pi}{2})\cup{(\dfrac{\pi}{2},\pi)}##. The graph of ##y=sec^{-1}x## is shown in Figure 3.25(b)(*). Is the reflection respect to the line ##y=x## of the part of ##\sec x## for ##x## between 0 and ##\pi##. Additionally
$$\sec(\sec^{-1}x)=\sec\left({\cos^{-1}\left({\dfrac{1}{x}}\right)}\right)
=\dfrac{1}{\cos\left({\cos^{-1}\left({\dfrac{1}{x}}\right)}\right)}=\dfrac{1}{\dfrac{1}{x}}=x\qquad{\mbox{for}\;|x|\geq 1}$$Up to now I've got to deal only with very easy compound functions. This quote represents a qualitative step forward. The domains and ranges are shown, but I would like to know: what if I had to do it by myself, if I was given only the identities, and had to manage to describe the domain and range of, suppose, the one at DEFINITION 13?

$$cos^{-1}\left({\dfrac{1}{x}}\right)$$

With no other help but the knowledge of the domain of ##y=\mbox{arcos}(x)##, ##(-1\leq x\leq 1)##, and ##\mathbb{R}\setminus{\{0\}}## for ##\dfrac{1}{x}##

As well, isn't there a mistake, a typo, at the sentence "Is the reflection respect to the line ##y=x## of the part of ##\sec x## for ##x## between 0 and ##\pi##"? Shouldn't be "of the part of ##sec^{-1} x##"?.

(*)Attached image

Attempt: Pure speculation; don't know why, but I've come across this statement: domain shouldn't be the intersection of the domain of ##y=\cos x## and the domain of the inverse function of ##y=\dfrac{1}{x}##?
 

Attachments

  • geogebra-export (2).png
    geogebra-export (2).png
    23.7 KB · Views: 134
Last edited by a moderator:
Mathematics news on Phys.org
I've typed the formulas with #### and $$$$. Why didn't I post successfully?. :oldcry:
 
mcastillo356 said:
I've typed the formulas with #### and $$$$. Why didn't I post successfully?. :oldcry:
You have simple forgotten a single "#" somewhere early. That was all. I corrected it.
 
  • Love
Likes mcastillo356
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
2
Views
1K
Replies
7
Views
1K
Replies
2
Views
1K
Replies
5
Views
1K
Replies
5
Views
1K
Replies
11
Views
2K
Back
Top