Aidan's question via email about Fourier Transforms (2)

In summary, the Fourier Transform of $\displaystyle 3\,H\left( t - 1 \right) \mathrm{e}^{-2\,t} $ is equal to $3\,\mathrm{e}^{-2 - \mathrm{i}\,\omega} \left( \frac{1}{2 + \mathrm{i}\,\omega } \right) $, using the Second Shift Theorem and the Fourier transform of $\displaystyle H(t)e^{-at}$ being $\displaystyle \frac{1}{a+i\omega}$.
  • #1
Prove It
Gold Member
MHB
1,465
24
Find the Fourier Transform of $\displaystyle 3\,H\left( t - 1 \right) \mathrm{e}^{-2\,t} $.

In order to use the Second Shift Theorem, the function needs to be entirely of the form $\displaystyle f\left( t - 1 \right) $. To do this let $\displaystyle v = t - 1 \implies t = v + 1 $, then

$\displaystyle \begin{align*}
\mathrm{e}^{-2\,t} &= \mathrm{e}^{-2 \, \left( v + 1 \right) } \\
&= \mathrm{e}^{-2\,v - 2 } \\
&= \mathrm{e}^{-2\,\left( t - 1 \right) - 2 } \\
&= \mathrm{e}^{-2\,\left( t - 1 \right) } \,\mathrm{e}^{-2}
\end{align*} $

And so

$\displaystyle \begin{align*} \mathcal{F}\,\left\{ 3\,H\left( t - 1 \right) \mathrm{e}^{-2\,t} \right\} &= 3\,\mathrm{e}^{-2}\,\mathcal{F}\,\left\{ H\left( t - 1 \right) \mathrm{e}^{-2\,\left( t - 1 \right) } \right\} \\
&= 3\,\mathrm{e}^{-2}\,\mathrm{e}^{-\mathrm{i}\,\omega} \,\mathcal{F}\,\left\{ H\left( t \right) \mathrm{e}^{-2\,t} \right\} \\ &= 3\,\mathrm{e}^{-2 - \mathrm{i}\,\omega} \left( \frac{1}{2 + \mathrm{i}\,\omega } \right) \end{align*} $
 
Mathematics news on Phys.org
  • #2
  • Like
Likes Greg Bernhardt

Similar threads

Replies
1
Views
9K
Replies
1
Views
10K
Replies
1
Views
9K
Replies
1
Views
10K
Replies
1
Views
11K
Replies
2
Views
10K
Replies
1
Views
10K
Replies
1
Views
6K
Replies
4
Views
10K
Back
Top