MHB Alexander's question via email about Laplace Transforms

AI Thread Summary
The evaluation of the Laplace Transform involves the Heaviside function, indicating a shift in the function. By substituting \( u = t - 4 \), the expression simplifies to \( e^{20} e^{5(t - 4)} \). Applying the second shift theorem leads to \( e^{20 - 4s} \) multiplied by the Laplace Transform of \( \sin(6t) e^{5t} \). The final result incorporates the first shift theorem, yielding \( e^{20 - 4s} \left[ \frac{6}{(s - 5)^2 + 36} \right] \). The calculations confirm the correctness of the evaluation.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Evaluate $\displaystyle \mathcal{L}\left\{ H\left( t - 4 \right) \sin{ \left[ 6 \left( t - 4 \right) \right] } \,\mathrm{e}^{5\,t} \right\} $

The Heaviside function suggests a second shift, but to do that, the entire function needs to be a function of $\displaystyle t - 4$.

Let $\displaystyle u = t - 4 \implies t = u + 4$, then

$\displaystyle \begin{align*} \mathrm{e}^{5\,t} &= \mathrm{e}^{5\left( u + 4 \right) } \\ &= \mathrm{e}^{5\,u + 20} \\
&= \mathrm{e}^{5\left( t - 4 \right) + 20} \\ &= \mathrm{e}^{20}\,\mathrm{e}^{5\left( t - 4 \right) } \end{align*}$

So

$\displaystyle \begin{align*} \mathcal{L}\left\{ H \left( t - 4 \right) \sin{\left[ 6\left( t - 4 \right) \right] } \,\mathrm{e}^{5\,t} \right\} &= \mathrm{e}^{20}\,\mathcal{L}\left\{ H\left( t - 4 \right) \sin{ \left[ 6\left( t - 4 \right) \right] }\, \mathrm{e}^{5\left( t - 4 \right) } \right\} \\ &= \mathrm{e}^{20}\,\mathrm{e}^{-4\,s} \,\mathcal{L} \left\{ \sin{ \left( 6\,t \right) }\, \mathrm{e}^{5\,t} \right\} \textrm{ by the second shift theorem} \\ &= \mathrm{e}^{20 - 4\,s } \left[ \frac{6}{s^2 + 6^2} \right] _{s \to s - 5} \textrm{ by the first shift theorem} \\ &= \mathrm{e}^{20 - 4\,s} \left[ \frac{6}{\left( s - 5 \right) ^2 + 36} \right] \end{align*}$
 
Mathematics news on Phys.org
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top