Algebraic properites of the direct sum

  • Thread starter Thread starter Bipolarity
  • Start date Start date
  • Tags Tags
    Direct sum Sum
Click For Summary
The discussion centers on the validity of a statement regarding the intersection of subspaces and their direct sum within a vector space. It is initially suggested that if the direct sum of subspaces equals a larger subspace, then the intersection of each subspace with the larger one should also yield the same larger subspace. However, it is clarified that this holds true only if the subspaces are indeed contained within the larger subspace. If the direct sum equals the entire vector space instead, counterexamples demonstrate that the statement is false. The conclusion emphasizes the importance of the relationship between the subspaces and the larger space in determining the truth of the statement.
Bipolarity
Messages
773
Reaction score
2
Is the following statement true? I am trying to see if I can use it as a lemma for a larger proof:

Let ##V## be a vector space and let ##W, W_{1},W_{2}...W_{k} ## be subspaces of ##V##.
Suppose that ## W_{1} \bigoplus W_{2} \bigoplus ... \bigoplus W_{k} = W ##
Then is it always the case that:
## (W_{1} \cap W) \bigoplus (W_{2} \cap W) \bigoplus ... \bigoplus (W_{k} \cap W) = W ##

In essence, this is asking whether there is a distributive law compatible with the set intersection operation and the direct sum operation. I am only asking for a determination of whether the statement is true for false. I will work out the proof/counterexample for myself.

Thanks!

BiP
 
Physics news on Phys.org
Ask yourself whether the Wi are subspaces of W
 
lavinia said:
Ask yourself whether the Wi are subspaces of W

It is obvious if they are subspaces of ##W##, but what if they aren't?

BiP
 
Bipolarity said:
It is obvious if they are subspaces of ##W##, but what if they aren't?

BiP

If W is the direct sum of the Wi then show me an element of one of the Wi's that is not in W
 
Bipolarity said:
Is the following statement true? I am trying to see if I can use it as a lemma for a larger proof:

Let ##V## be a vector space and let ##W, W_{1},W_{2}...W_{k} ## be subspaces of ##V##.
Suppose that ## W_{1} \bigoplus W_{2} \bigoplus ... \bigoplus W_{k} = W ##
Then is it always the case that:
## (W_{1} \cap W) \bigoplus (W_{2} \cap W) \bigoplus ... \bigoplus (W_{k} \cap W) = W ##

In essence, this is asking whether there is a distributive law compatible with the set intersection operation and the direct sum operation. I am only asking for a determination of whether the statement is true for false. I will work out the proof/counterexample for myself.

Thanks!

BiP
As it stands, the answer is obviously yes, since each ##W_i## is a subspace of ##W##, and hence ##W_ i\cap W=W_i##.

But I assume that there is a typo and that you meant ## W_{1} \bigoplus W_{2} \bigoplus ... \bigoplus W_{k} = V ##. Then, the answer is no. It is almost trivial to find a counterexample in R2.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
8K
  • · Replies 3 ·
Replies
3
Views
7K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
546
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K