- #1
Math Amateur
Gold Member
MHB
- 3,998
- 48
I am reading Dummit and Foote (D&F) Section 15.1 on Affine Algebraic Sets.
On page 662 (see attached) D&F define a morphism or polynomial map of algebraic sets as follows:
-----------------------------------------------------------------------------------------------------
Definition. A map [TEX] \phi \ : V \rightarrow W [/TEX] is called a morphism (or polynomial map or regular map) of algebraic sets if
there are polynomials [TEX] {\phi}_1, {\phi}_2, ... , {\phi}_m \in k[x_1, x_2, ... ... x_n] [/TEX] such that
[TEX] \phi(( a_1, a_2, ... a_n)) = ( {\phi}_1 ( a_1, a_2, ... a_n) , {\phi}_2 ( a_1, a_2, ... a_n), ... ... ... {\phi}_m ( a_1, a_2, ... a_n)) [/TEX]
for all [TEX] ( a_1, a_2, ... a_n) \in V [/TEX]
-------------------------------------------------------------------------------------------------------D&F then go on to define a map between the quotient rings k[W] and k[V] as follows: (see attachment page 662)-------------------------------------------------------------------------------------------------------
Suppose F is a polynomial in [TEX] k[x_1, x_2, ... ... x_n] [/TEX].
Then [TEX] F \circ \phi = F({\phi}_1, {\phi}_2, ... , {\phi}_m) [/TEX] is a polynomial in [TEX] k[x_1, x_2, ... ... x_n] [/TEX]
since [TEX] {\phi}_1, {\phi}_2, ... , {\phi}_m [/TEX] are polynomials in [TEX] x_1, x_2, ... ... x_n [/TEX].
If [TEX] F \in \mathcal{I}(W)[/TEX], then [TEX] F \circ \phi (( a_1, a_2, ... a_n)) = 0 [/TEX] for every [TEX] ( a_1, a_2, ... a_n) \in V [/TEX]
since [TEX] \phi (( a_1, a_2, ... a_n)) \in W [/TEX].
Thus [TEX] F \circ \phi \in \mathcal{I}(V) [/TEX]
It follows that [TEX] \phi [/TEX] induces a well defined map from the quotient ring [TEX] k[x_1, x_2, ... ... x_n]/\mathcal{I}(W) [/TEX]
to the quotient ring [TEX] k[x_1, x_2, ... ... x_n]/\mathcal{I}(V) [/TEX] :
[TEX] \widetilde{\phi} \ : \ k[W] \rightarrow k[V] [/TEX]
[TEX] f \rightarrow f \circ \phi [/TEX]
-------------------------------------------------------------------------------------------------------------------
My problem is, how exactly does it follow (and why?) that [TEX] \phi [/TEX] induces a well defined map from the quotient ring [TEX] k[x_1, x_2, ... ... x_n]/\mathcal{I}(W) [/TEX] to the quotient ring [TEX] k[x_1, x_2, ... ... x_n]/\mathcal{I}(V) [/TEX] ?
Can someone (explicitly) show me the logic of this - why exactly does it follow?
Peter
On page 662 (see attached) D&F define a morphism or polynomial map of algebraic sets as follows:
-----------------------------------------------------------------------------------------------------
Definition. A map [TEX] \phi \ : V \rightarrow W [/TEX] is called a morphism (or polynomial map or regular map) of algebraic sets if
there are polynomials [TEX] {\phi}_1, {\phi}_2, ... , {\phi}_m \in k[x_1, x_2, ... ... x_n] [/TEX] such that
[TEX] \phi(( a_1, a_2, ... a_n)) = ( {\phi}_1 ( a_1, a_2, ... a_n) , {\phi}_2 ( a_1, a_2, ... a_n), ... ... ... {\phi}_m ( a_1, a_2, ... a_n)) [/TEX]
for all [TEX] ( a_1, a_2, ... a_n) \in V [/TEX]
-------------------------------------------------------------------------------------------------------D&F then go on to define a map between the quotient rings k[W] and k[V] as follows: (see attachment page 662)-------------------------------------------------------------------------------------------------------
Suppose F is a polynomial in [TEX] k[x_1, x_2, ... ... x_n] [/TEX].
Then [TEX] F \circ \phi = F({\phi}_1, {\phi}_2, ... , {\phi}_m) [/TEX] is a polynomial in [TEX] k[x_1, x_2, ... ... x_n] [/TEX]
since [TEX] {\phi}_1, {\phi}_2, ... , {\phi}_m [/TEX] are polynomials in [TEX] x_1, x_2, ... ... x_n [/TEX].
If [TEX] F \in \mathcal{I}(W)[/TEX], then [TEX] F \circ \phi (( a_1, a_2, ... a_n)) = 0 [/TEX] for every [TEX] ( a_1, a_2, ... a_n) \in V [/TEX]
since [TEX] \phi (( a_1, a_2, ... a_n)) \in W [/TEX].
Thus [TEX] F \circ \phi \in \mathcal{I}(V) [/TEX]
It follows that [TEX] \phi [/TEX] induces a well defined map from the quotient ring [TEX] k[x_1, x_2, ... ... x_n]/\mathcal{I}(W) [/TEX]
to the quotient ring [TEX] k[x_1, x_2, ... ... x_n]/\mathcal{I}(V) [/TEX] :
[TEX] \widetilde{\phi} \ : \ k[W] \rightarrow k[V] [/TEX]
[TEX] f \rightarrow f \circ \phi [/TEX]
-------------------------------------------------------------------------------------------------------------------
My problem is, how exactly does it follow (and why?) that [TEX] \phi [/TEX] induces a well defined map from the quotient ring [TEX] k[x_1, x_2, ... ... x_n]/\mathcal{I}(W) [/TEX] to the quotient ring [TEX] k[x_1, x_2, ... ... x_n]/\mathcal{I}(V) [/TEX] ?
Can someone (explicitly) show me the logic of this - why exactly does it follow?
Peter