- #1
tjkubo
- 42
- 0
I'm going through an explanation in a number theory book about Tonelli's algorithm to find the square roots of a quadratic residue modulo ##p## where ##p## is prime, i.e. I want to solve ##x^2 \equiv a \pmod{p}## with ##(\frac{a}{p}) = 1##. The book goes as follows:
Let ##p - 1 = 2^s t##, where ##t## is odd.
By Euler's criterion, ##A^{2^{s-1}} \equiv 1## where ##A = a^t##, so the order of ##A## divides ##2^{s-1}##.
Let ##d## be a quadratic nonresidue mod ##p## and ##D = d^t##.
By Euler's criterion, ##D^{2^{s-1}} \equiv -1## so the order of ##D## is exactly ##2^s##. Similarly, the order of ##D^{-1}## is ##2^s##.
Since the group ##U(p)## of units mod ##p## is cyclic, ##A## is in ##\langle D^{-1} \rangle##, the cyclic subgroup generated by ##D^{-1}##. Moreover, ##A \equiv D^{-2u}## where ##u## is some integer ##0 \leq u < 2^{s-1}##.
Then, ##a^tD^{2u} \equiv 1##, so ##a^{t+1}D^{2u} \equiv a##. Thus, a solution is ##x \equiv a^{(t+1)/2}D^u##.I got stuck where it says ##A## is an even power of ##D^{-1}##. Can someone explain this?
Let ##p - 1 = 2^s t##, where ##t## is odd.
By Euler's criterion, ##A^{2^{s-1}} \equiv 1## where ##A = a^t##, so the order of ##A## divides ##2^{s-1}##.
Let ##d## be a quadratic nonresidue mod ##p## and ##D = d^t##.
By Euler's criterion, ##D^{2^{s-1}} \equiv -1## so the order of ##D## is exactly ##2^s##. Similarly, the order of ##D^{-1}## is ##2^s##.
Since the group ##U(p)## of units mod ##p## is cyclic, ##A## is in ##\langle D^{-1} \rangle##, the cyclic subgroup generated by ##D^{-1}##. Moreover, ##A \equiv D^{-2u}## where ##u## is some integer ##0 \leq u < 2^{s-1}##.
Then, ##a^tD^{2u} \equiv 1##, so ##a^{t+1}D^{2u} \equiv a##. Thus, a solution is ##x \equiv a^{(t+1)/2}D^u##.I got stuck where it says ##A## is an even power of ##D^{-1}##. Can someone explain this?